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Abstract
A semi-partitioned scheduler called EDF-tu is presented
that is the first such scheduler to be optimal on uniform het-
erogeneous multiprocessors. EDF-tu utilizes an adjustable
allocation parameter called a frame to schedule tasks that
migrate. The frame size F must divide all task periods to en-
sure hard real-time optimality, but for any choice of F , max-
imum deadline tardiness is at most F . Thus, the proper se-
lection of F hinges on runtime overheads (which are higher
when F is smaller) and the strength of the real-time guar-
antee desired. When determining which tasks must migrate,
new issues specific to heterogeneous platforms arise that
have not been explored before. It is shown via counterex-
amples that resolving such issues differently from EDF-tu
can render feasible task systems unschedulable.

1 Introduction
Heterogeneous computing platforms have processing ele-
ments that may differ with respect to execution speed or
functionality. Such differences can be exploited in the de-
sign of real-time systems to achieve a variety of goals. For
example, ARM’s big.LITTLE multicore architecture [6] en-
ables goals related to performance/energy tradeoffs to be
flexibly addressed by providing two categories of cores: rel-
atively slower, low-power ones and faster, high-power ones.

There is currently great interest in industry in exploit-
ing such flexibility in fielded commercial products where
real-time constraints exist. Unfortunately, while significant
progress has been made in work on real-time resource-
allocation techniques for homogeneous multiprocessors, the
same is not true of heterogeneous ones. This is not surpris-
ing: on a heterogeneous platform, choices must be made
when selecting the hardware component(s) upon which a
task will execute. The need to resolve such choices can
greatly complicate resource allocation.

In this paper, we expand upon the known body of work
directed at real-time heterogeneous platforms by present-
ing the first semi-partitioned scheduler that is optimal1 on
an important category of such platforms, namely uniform
ones. On a uniform platform, processors differ only with re-
spect to speed. Semi-partitioned schedulers [1] are a hybrid
between pure global and partitioned schedulers wherein
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migration is allowed for only a limited number of tasks,
with the remaining ones being fixed to processors. A semi-
partitioned scheduler can enable a wider range of systems
to be supported than is possible under pure partitioning, but
without incurring excessive migration costs. We describe
the new scheduler proposed herein in greater detail below,
after first presenting a brief overview of prior related work.

Related work. The first proposed semi-partitioned sched-
uler, EDF-fm [1], was designed for soft real-time (SRT) sys-
tems, where the SRT constraint of interest is that deadline
tardiness is bounded (all references to SRT in this paper
are with respect to this definition). EDF-fm requires uti-
lization constraints that render it non-optimal for SRT sys-
tems. Such constraints were eliminated in the recently pro-
posed EDF-os [2], which is the first semi-partitioned sched-
uler that is SRT-optimal. In work on hard real-time (HRT)
systems, a variety of semi-partitioned schedulers have been
proposed [3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 22].
Of these, only EKG [4] is HRT-optimal, and only for peri-
odic task systems. EKG is optimal only when a configurable
parameter is reduced in a way that increases preemption fre-
quency. The same is true of the scheduler proposed herein.

All of the work cited above pertains to homogeneous
multiprocessors. Funk and colleagues were the first to study
the real-time scheduling of sporadic task systems on het-
erogeneous multiprocessors, as summarized in her disserta-
tion [12]. However, this work pre-dated the advent of work
on semi-partitioned schedulers. Variants of EDF-fm and
EDF-os have been were proposed for SRT heterogeneous
systems [20, 23], but these variants are not SRT-optimal.
As explained later, heterogeneous platforms require a more
complicated condition for identifying feasible task systems
than homogeneous ones, and the analysis in these papers
does not incorporate this more complicated condition.

Contributions. We develop an earliest-deadline-first-
based semi-partitioned scheduler, EDF-tu (“tu” stands for
“tunable scheduler for uniform platforms”), to schedule
implicit-deadline sporadic task systems on uniform het-
erogeneous multiprocessors. EDF-tu uses an allocation
parameter called a frame in managing migrating tasks.
The frame size F is a tunable parameter. If F divides
all task periods, then HRT optimality is ensured, but this
comes at the expense of preemption frequencies that could
be high for some systems. On the other hand, if only
SRT schedulability is required, then F can be set to any
value, and the deadline tardiness of any invocation of any
task will be at most F . Thus, EDF-tu flexibly enables



tradeoffs between preemption overheads and timeliness to
be explored; we examine such tradeoffs both analytically
and experimentally herein.

To the best of our knowledge, this is the first paper to
consider such tradeoffs with respect to uniform heteroge-
neous platforms. Additionally, EDF-tu is only the second
optimal algorithm proposed for scheduling sporadic task
systems on such platforms—the only prior one is an algo-
rithm proposed by Funk et al. [13] as a byproduct towards
establishing a feasibility condition for such systems. That
prior algorithm is not a semi-partitioned algorithm, and thus
can have many more migrating tasks than EDF-tu. Thus,
EDF-tu is a step forward with respect to practicality. Finally,
this paper is the first to explore a number of issues pertaining
to task assignments in semi-partitioned algorithms that are
unique to heterogeneous platforms. In particular, we present
counterexamples that show that assignment strategies that
radically differ from that of EDF-tu can render feasible task
systems unschedulable.

Organization. In the rest of this paper, we provide needed
background (Sec. 2), develop conditions for obtaining fea-
sible task assignments (Sec. 3), describe EDF-tu in detail
(Sec. 4), present our optimality analysis (Sec. 5), examine
alternative task-assignment strategies (Sec. 6), present an
experimental evaluation (Sec. 7), and conclude (Sec. 8).

2 Background
We consider the scheduling of n implicit-deadline sequen-
tial sporadic tasks on m processors, where n ≥ m (we as-
sume familiarity with these terms). We specify a task τi by
(Ci, Ti), where Ci is its worst-case execution requirement
and Ti is its period, and denote its utilization as

ui =
Ci
Ti
. (1)

On a heterogeneous platform, ui ≤ 1 does not necessarily
hold. Needed restrictions on utilizations are given later in
Sec. 2.1. We assume that time is continuous.

A job is an invocation of a task. If a job that has a dead-
line at time td and completes at time tc, then its tardiness
is defined as max{0, tc − td}. The tardiness of a task is the
maximum tardiness of any of its jobs. A task system is HRT-
schedulable (SRT-schedulable) under a given scheduling al-
gorithm if each task can be guaranteed zero (bounded) tar-
diness under that algorithm. A task system is HRT-feasible
(SRT-feasible) if it is HRT-schedulable (SRT-schedulable)
under some scheduler. A given scheduler is HRT-optimal
(SRT-optimal) if any HRT-feasible (SRT-feasible) task sys-
tem is HRT-schedulable (SRT-schedulable) under it. Hence-
forth, references to the term “feasible” without qualification
should be taken to mean “HRT-feasible.”

A taxonomy of multiprocessors. The following taxon-
omy [12, 21] classifies multiprocessor platforms according
to assumptions about processor speeds—the speed of a pro-
cessor refers to the amount of work completed in one time

unit when a job is executed on that processor.

• Identical multiprocessors. Every job is executed on
any processor at the same speed, which is usually nor-
malized to be 1.0 for simplicity.

• Uniform heterogeneous multiprocessors. Different
processors may have different speeds, but on a given
processor, every job is executed at the same speed. The
speed of processor p is denoted sp.

• Unrelated heterogeneous multiprocessors. The exe-
cution speed of a job depends on both the processor on
which it is executed and the task to which it belongs,
i.e., a given processor may execute jobs of different
tasks at different speeds. The execution speed of task
τi on processor p is denoted sp,i.

On identical and uniform platforms, a processor’s capacity
is given by its speed, which can be thought of as the total
available utilization that can be allocated.
Semi-partitioned scheduling. Under semi-partitioned
scheduling, each task is allocated a non-zero share on
certain processors such that the total allocated share on
each processor does not exceed the processor’s capacity
and the total allocated share of a task matches its utiliza-
tion. If a task has non-zero shares on only one (multiple)
processor(s), then it is a fixed (migrating) task.

2.1 Uniform Heterogeneous Multiprocessors

In the rest of this paper, we consider a uniform heteroge-
neous multiprocessor system π, which has m processors.
Processor p is identified by its speed sp (1 ≤ p ≤ m,
sp ∈ R). Also, we index the processors in non-increasing-
speed order, i.e., π = {s1, s2, · · · , sm}, where sp ≥ sp+1

for p ∈ {1, 2, · · · ,m − 1}. We consider scheduling a spo-
radic task set τ on π. We index the tasks in non-increasing-
utilization order, i.e., τ = {τ1, τ2, · · · , τn}, where ui ≥
ui+1 for i ∈ {1, 2, · · · , n− 1}.

Let Uk =
∑k
i=1 ui, Sk =

∑k
i=1 si. Also, denote the

total system utilization as Uτ = Un and the total plat-
form capacity as Sπ = Sm. By leveraging the Level Algo-
rithm [16], Funk et al. [13] showed that an implicit-deadline
periodic task system τ is feasible on a uniform heteroge-
neous multiprocessor system π if and only if the following
conditions hold.

Uτ ≤ Sπ (2)

Uk ≤ Sk for k = 1, 2, · · · ,m− 1 (3)

In fact, the proof in [13] also shows that (2) and (3) are a
necessary and sufficient feasibility condition (HRT or SRT)
for implicit-deadline sporadic task systems.

2.2 Level Algorithm

The Level Algorithm was proposed by Horvath et al. [16]
for scheduling a set of non-real-time jobs on a uniform
multiprocessor and minimizing makespan, i.e., the time re-
quired for finishing all jobs. A job’s level is defined by its re-



maining execution time. The greater a job’s level, the faster
the processor on which it is scheduled, and all jobs that at-
tain the same level are thereafter jointly executed, equally
sharing the processors on which they are scheduled. The
following example illustrates the Level Algorithm.
Ex. 1. Consider using the Level Algorithm to schedule four
jobs, with initial execution requirements J1 = 12, J2 = 12,
J3 = 8.5, and J4 = 7.5, on a uniform platform π =
{s1 = 4, s2 = 3, s3 = 2, s4 = 1}. J1 and J2 have the same
execution cost, or level, so they are jointly executed from the
beginning; J3 and J4 attain the same level at time 1, so they
are jointly executed after time 1. At time 2, all jobs attain
the same level, and hence all jobs are jointly executed af-
terward. Fig. 1(a) shows the resulting schedule by the Level
Algorithm for this example. Fig. 1(b) shows the real sched-
ule for “jointly executing.” Fig. 1(c) shows the real sched-
ule for the system. As seen in Fig. 1(d), when jobs start to
jointly execute, we can make every processor involved in
this joint execution start with its currently executing job to
reduce unnecessary preemptions and migrations.

Theorem 1 (Theorem 1 in [16]). Let J = {J1, J2, · · · ,
Jn} denote a set of independent non-real-time jobs to be
scheduled on anm-processor uniform multiprocessor π. Let
Xi denote the sum of i largest execution requirements in J .
Then the Level Algorithm constructs a minimum makespan,
which is given by

max

(
max

1≤i≤m−1

{
Xi

Si

}
,
Xn

Sm

)
.

This is very similar to the feasibility condition given by
(2) and (3), because that feasibility condition was, in fact,
derived from the Level Algorithm [13].

3 Feasible Assignments
Most semi-partitioned scheduling algorithms are defined
by specifying separate assignment and execution phases.
In the former, per-processor shares are defined offline for
each task, and fixed tasks are distinguished from migrating
ones. In the latter, an actual schedule is produced at run-
time, based on the task share assignments. In this section,
we explore the problem of obtaining share assignments. We
show that issues arise in the case of uniform heterogeneous
platforms that have not been considered before.

In addressing such issues, we will need to examine situa-
tions where some number of tasks in the assignment process
have been assigned as fixed. We let σfi denote the sum of the
utilizations of the fixed tasks on processor si, i.e.,

σfi =
∑

τk is a fixed task
on processor si

uk. (4)

We define the residual capacity (i.e., the currently available
capacity) of processor si as si − σfi .

In most prior work on semi-partitioned scheduling on
identical platforms, a greedy assignment method is used
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Figure 1: Level Algorithm resulting schedule for Ex. 1.

wherein the currently considered task is assigned as fixed
if possible. Consider the following example.
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Figure 2: Assignment and schedule for Ex. 2.

Ex. 2. Three tasks {τ1 = (2, 3), τ2 = (2, 3), τ3 = (2, 3)}
are to be scheduled on two unit-speed processors. We greed-
ily assign the first two tasks as fixed, and then require the
remaining one to migrate. This results in the share assign-
ment shown in Fig. 2(a). As seen in Fig. 2(b), we can easily
determine a schedule corresponding to this assignment such
that all deadlines are met.

As the next example shows, a greedy assignment strategy
can be problematic on a heterogeneous platform.

Ex. 3. Consider scheduling the two tasks {τ1 = (2, 1),
τ2 = (2, 1)} on the two-processor uniform heterogeneous
platform π ={s1 = 3, s2 = 1}. When we first consider as-
signing τ1, processor s1 has enough capacity for it, and if we
assign τ1 there, the residual capacity of the system matches
the utilization of τ2. The task share allocations must be as
shown in Fig. 3(a). The allocation to τ2 implies that it must
execute in parallel as shown in Fig. 3(b), so this assignment
is infeasible. However, the original system is feasible, as
seen in insets (c) and (d) of Fig. 3.

We now determine conditions for ensuring that a task as-
signment is feasible. After some tasks have been fixed, let
{zi} denote the residual capacities of the processors on plat-
form π, indexed in non-increasing order. Note that the in-
dexing of {zi} may differ from that of {si}, i.e., zi does not
necessarily correspond to the residual capacity on si. Let
p(i) denote the index of the processor with the remaining
capacity zi, i.e., zi is the remaining capacity of the processor
of speed sp(i): zi + σfp(i) = sp(i). Also, let Zk =

∑k
i=1 zi.

Theorem 2. Any task set that is feasible on the fully avail-
able platform π′ = {s′1 =z1, s′2 =z2, . . . , s′m=zm} can also
be correctly scheduled using the residual capacities {zi} of
platform π. (In a correct schedule, all deadlines are met and
all requirements of the sporadic model are respected.)

Proof. We prove this theorem by transforming an arbitrary
schedule I ′ on π′ to a corresponding schedule I on π such
that if I ′ is correct, then I is also correct. Moreover, in I,
only a capacity of zi is utilized on sp(i) for each i.

We split the time line of I ′ into slices of width ∆ such
that, on any processor of π′, all preemptions, migrations,
job releases, and job deadlines occur on slice boundaries.
This requirement can be met by choosing ∆ small enough.
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Figure 3: Assignment and schedule for Ex. 3. The width of each
rectangle represents the speed of its corresponding processor.

We construct I on a per-slice basis: within each slice, we
schedule in I exactly the same jobs as scheduled in I ′ and
on exactly the same processors. However, in I, the job (if
any) that executes on processor s′i in I ′ is scheduled within
the first zi

sp(i)
·∆ time units of the slice. It is easy to see that

the resulting schedule I is correct if I ′ is. In particular, all
deadlines will be met and all requirements of the sporadic
model are respected (including no intra-task parallelism).
Also, it is straightforward to see that only a capacity of zi is
utilized on sp(i) for each i.

By Theorem 2, after some tasks have been assigned as
fixed, the platform defined by the resulting residual capaci-
ties can be viewed as a fully available platform as far as the
feasibility of the remaining, unassigned tasks is concerned.

In the rest of this section, let τ denote the set of the re-
maining, unassigned tasks, and let π denote the platform de-
fined by the residual processor capacities. Also, let {ui} de-
note the utilizations of the remaining tasks, and assume they
are indexed in non-increasing order. Let Uk =

∑k
i=1 ui.

Define the total utilization of the remaining tasks as Uτ and
the total residual capacity of the platform as Zπ .

Theorem 3. τ is feasible on π if 2 the following conditions
hold.

Uτ ≤ Zπ (5)

Uk ≤ Zk for k = 1, 2, · · · ,m− 1 (6)

Proof. Follows from Thm. 2 and the feasibility condition for
uniform platforms, (2) and (3).

2A counterexample is given in Appendix C that shows that “only if”
cannot be asserted here.



By Thm. 3, we have a sufficient test to check if a task
assignment is guaranteed to preserve the feasibility of the
system. Next, we show that the following scheme can guar-
antee that any feasible system can have at mostmmigrating
tasks and still be feasible.

• Consider tasks from lightest to heaviest by utilization.

• Use the best-fit bin-packing heuristic to assign as many
tasks as possible as fixed.

The guarantee mentioned above follows from the follow-
ing lemma. (Note that the task τn mentioned in the lemma
definitely can be assigned as fixed if (5) and (6) hold.)

Lemma 1. Let n denote the number of tasks in τ and as-
sume n ≥ m+ 1. If τ and the residual processor capacities
π satisfy (5) and (6), then after using the best-fit heuristic to
assign the lightest task in τ (i.e., τn) as fixed, the remaining
task set τ ′ and residual processor capacities π′ must satisfy
(5) and (6) as well.
Proof. We prove this lemma by contradiction by showing
that any violation of (5) or (6) for τ ′ and π′ implies a viola-
tion of (5) or (6) for τ and π.

Since we consider tasks from lightest to heaviest, the or-
der of tasks in τ ′ is the same as that in τ except the absence
of the lightest one, τn. Thus,

u′i = ui for 1 ≤ i ≤ n− 1. (7)

Case 1: τ ′ and π′ violate (5). Since the only change is
that τn is assigned, the total remaining utilization decreases
by un and total residual capacity decreases by un too, i.e.,
U ′τ ′ = Uτ − un and Z ′π′ = Zπ − un. Thus, τ ′ and π′ vio-
lating (5) implies τ and π violate (5) as well.
Case 2: τ ′ and π′ violate (6). In this case, let zγ be the
processor on which τn is fixed. Since {zi} is indexed non-
increasingly, without loss of generality, we can assume
that the best-fit bin-packing heuristic always chooses the
highest-indexed zi among those with equal values (if it does
not, we can re-index them, which will not change either {zi}
or the resulting {z′i}), i.e., zγ > zγ+1 if γ < m. Thus, as a
result of the best-fit heuristic, we have

un > zi for any i > γ. (8)

Moreover, the assignment of τn will not alter the indices of
the largest γ − 1 capacities in π, i.e.,

z′i = zi for any i ≤ γ − 1. (9)

Also, other than zγ , the relative ordering in {zi} is preserved
in {z′i} as well. That is, letting φ denote the new index of zγ
in π′, i.e., z′φ = zγ − un, where γ ≤ φ ≤ m, {z′i} is

{z1, . . . , zγ−1, zγ+1, . . . , zφ, zγ − un, zφ+1, . . . , zm}.
(10)

Note that, if φ = γ, then the sequence zγ+1, . . . , zφ is
empty; similarly, φ = m implies that the sequence zφ+1,
. . . , zm is empty.

From (10),

z′i =


zi if 1 ≤ i ≤ γ − 1 or i ≥ φ+ 1,
zi+1 if γ ≤ i ≤ φ− 1,
zγ − un if i = φ.

(11)

Case 2.1: τ ′ and π′ violate (6) at k such that k ≤ γ − 1.
By (7) and (11), U ′k = Uk and Z ′k = Zk. Thus, τ and π
violate (6) at k as well.

Case 2.2: τ ′ and π′ violate (6) at k such that k ≥ γ.That is,

U ′k > Z ′k. (12)

First, we show the following inequality holds in Case 2.2
by considering two sub-cases.

Z ′k ≥

(
k∑
i=1

zi

)
− un. (13)

Case 2.2.1: γ ≤ k ≤ φ− 1.

Z ′k =

(
γ−1∑
i=1

z′i

)
+

k−1∑
i=γ

z′i

+ z′k

≥{since k ≤ φ− 1 and {z′i} is in non-increasing order}(
γ−1∑
i=1

z′i

)
+

k−1∑
i=γ

z′i

+ z′φ

={by (11)}(
γ−1∑
i=1

zi

)
+

k−1∑
i=γ

zi+1

+ (zγ − un)

={simplifying}(
k∑
i=1

zi

)
− un.

Case 2.2.2: k ≥ φ.

Z ′k =

(
γ−1∑
i=1

z′i

)
+

φ−1∑
i=γ

z′i

+ z′φ +

 k∑
i=φ+1

z′i


={by (11)}(

γ−1∑
i=1

zi

)
+

φ−1∑
i=γ

zi+1

+ (zγ − un) +

 k∑
i=φ+1

zi


={simplifying}(

k∑
i=1

zi

)
− un.

From these sub-cases, we can conclude that (13) holds.



By (12) and (13), we have

U ′k + un >

(
k∑
i=1

zi

)
. (14)

By the condition of Case 2.2, k ≥ γ, and by (8), we have
un > zi for any i ≥ k + 1 > γ, which implies

(m− k)un >

(
m∑

i=k+1

zi

)
. (15)

By (14), (15), and the definition of Zπ ,

U ′k + (m− k + 1)un > Zπ. (16)

Finally, we have

Uτ = Uk +

n∑
i=k+1

ui

= {by (7)}

U ′k +

n∑
i=k+1

ui

≥ {since {ui} is in non-increasing order}
U ′k + (n− k)un

≥ {since n ≥ m+ 1}
U ′k + (m− k + 1)un.

(17)

By (16) and (17), Uτ > Zπ holds, i.e., τ and π violate (5).

In the remainder of the paper, we say that an assign-
ment of a task as fixed to a processor is legal if and only
if (5) and (6) hold for the remaining, unassigned tasks.

Theorem 4. For any feasible task system, if we continue
to assign tasks as fixed as long as legal assignments can be
made using the best-fit heuristic, with tasks considered from
lightest to heaviest by utilization, then at most m tasks will
remain as unassigned.

Proof. By Thm. 3 and Lem. 1, we can continue to make legal
assignments at least until the number of unassigned tasks is
m.

4 Algorithm EDF-tu
We now describe our new scheduling algorithm EDF-tu by
considering its assignment and execution phases separately.

Assignment phase. The assignment phase must not only
distinguish fixed tasks from migrating ones, but also deter-
mine the per-processor share allocations for each migrat-
ing task. As for determining which tasks should be fixed,
Thm. 4 suggests the way forward: we simply consider tasks
from lightest to heaviest by utilization, and keep assigning
tasks as fixed via the best-fit heuristic until all of them are
assigned or we encounter a task that cannot be so assigned

legally. The remaining m′ unassigned tasks will be migrat-
ing tasks. By Thm. 4, m′ ≤ m. Also, by Thms. 2 and 4, the
set of migrating tasks is feasible on the resulting platform
as defined by the residual processor capacities. In fact, this
set of tasks is feasible on the sub-platform comprised of the
m′ processors with the largest residual capacities.

In order to determine per-processor share allocations for
migrating tasks, and how such tasks are scheduled along-
side fixed ones, we construct a processor allocation table.
This table indicates which task may execute on which pro-
cessor within an interval of time, or frame, of length F . As
shown later in Sec. 5, if HRT-schedulability is the goal, then
the frame size F must meet a certain constraint, but this con-
straint is not required if only SRT-schedulability is required.

We construct the processor allocation table A via a two-
step process (which is illustrated via an example below). In
the first step, we construct a processor allocation table A′
for the m′ migrating tasks on a hypothetical platform π′ =
{s′1 = z1, s′2 = z2, . . . , s′m′ = zm′} by applying the Level
Algorithm to schedule the job set J with execution costs
{u1 ·F , u2 ·F , . . . , um′ ·F} on π′. We obtain the tableA′ by
allocating processor s′i to task τk in each sub-interval where
the corresponding job of cost uk · F executes on processor
s′i. The Level Algorithm ensures that the schedule for J is
free of intra-job parallelism. This implies that task alloca-
tions in the table A′ are free of intra-task parallelism. Also,
by Thms. 1, 3, and 4, the makespan of the schedule for J is
at most F . This implies that A′ gives task allocations over
an interval of length at most F as well. The total allocation
recorded for each migrating task τk in A′ is uk · F .

In the second step, we obtain the final table A by inte-
grating allocations for fixed tasks into A′. Examining the
task allocations recorded in A′, we say that the sub-interval
[t1, t2) is a maximal non-preemptive sub-interval on proces-
sor s′i if s′i is allocated to the same migrating task through-
out [t1, t2) and s′i is not allocated to that task either imme-
diately before t1 or at t2. We construct the processor allo-
cation table A for the real physical platform π from A′ by
examining all such maximal non-preemptive sub-intervals.
In particular, if the migrating task τk is allocated in A′ to
processor s′i throughout the maximal non-preemptive sub-
interval [t1, t2), then we allocate processor sp(i) to τk in
A throughout the first zi

sp(i)
of the maximal non-preemptive

sub-interval, i.e.,
[
t1, t1 + zi

sp(i)
· (t2 − t1)

)
. We allocate

the remainder of the maximal non-preemptive sub-interval,
i.e.,

[
t1 + zi

sp(i)
· (t2 − t1), t2

)
, to fixed tasks on sp(i). We

denote this in the table by indicating that the sub-interval[
t1+ zi

sp(i)
·(t2−t1), t2

)
is allocated to σfp(i). Ifm′ < m, then

A is extended to incorporate all processors by fully allocat-
ing the processors with residual capacities zm′+1, . . . , zm
to the fixed tasks assigned to those processors.

The pseudo-code for the assignment process is given in
Appendix A. The following example provides an illustra-
tion.

Ex. 4. Suppose that after all fixed tasks have been identi-
fied, we are left with four migrating tasks with utilizations
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Figure 4: EDF-tu execution phase illustration for Ex. 4.

{3, 3, 2.125, 1.875} to be scheduled on four processors with
residual capacities {4, 3, 2, 1}. Further, suppose we are us-
ing a frame size of F = 4. Then the schedule resulting from
the Level Algorithm within a frame is identical to Ex.1.
Fig. 4(a) shows the resulting table A′, which provides al-
locations only for migrating tasks. To obtain the final table
A for these four processors, we must integrate fixed tasks.
To illustrate this, suppose that the processor with residual
capacity z4 = 1 corresponds to a physical processor with
speed sp(4) = 2, i.e., half of this processor’s capacity is re-
served for fixed tasks. Then the allocations on this processor
within each frame will be as depicted in Fig. 4(b).

Execution phase. In the execution phase, the processor al-
location table A is consulted on a frame-by-frame basis at
runtime to determine which task may execute on which pro-
cessor at any given time. In particular, the following rules
are applied at any time t ∈ [k ·F, (k+1)·F ), where k ∈ Z+.

• If processor s′i is allocated to the migrating task τk at
time t mod F in A, and if τk has an unfinished job at
time t, then the earliest-released such job is scheduled
on processor s′i.

• If no such job exists, or if processor s′i is either unallo-
cated or allocated to σfi at time t mod F in A, then an
unfinished job of a fixed task on s′i is scheduled on pro-
cessor s′i at time t if one exists. If multiple such jobs
exist, then the one with the earliest deadline is selected.
If no such job exists, then processor s′i is idled.

According to the sporadic task model, it is possible for a
task to release a job within a frame, i.e., at some time k ·F+

r, where k ∈ Z+ and 0 < r < F . Such a job will receive
exactly the same allocation over the next F time units as it
would receive had it been released at a frame boundary. As a
result, EDF-tu guarantees the following two key properties.

Property 1. Within any time interval of length F , the pro-
cessor supply guaranteed to a migrating task τi is ui · F .
Therefore, within any time interval of length L, the pro-
cessor supply guaranteed to a migrating task τi is at least⌊
L
F

⌋
· ui · F .

Property 2. Within any time interval of length F , the sup-
ply guaranteed to the set of fixed tasks on processor sp is
σfp · F . Therefore, within any time interval of length L, the
supply guaranteed to the set of all fixed tasks on proces-
sor sp is at least

⌊
L
F

⌋
· σfp · F .

5 Optimality
We now show that EDF-tu is HRT-optimal, provided the
frame size, F , meets a certain requirement. We also show
that EDF-tu is SRT-optimal for any choice of F , with the
tardiness of any job being at most F . As F decreases, pre-
emption frequencies increase, so the choice of F is a trade-
off between temporal guarantees and run-time overheads.

5.1 HRT Optimality

HRT optimality is dealt with in the following theorem.

Theorem 5. If the frame size F divides the periods of all
tasks, then all deadlines will be meet.
Proof. Since the frame size F divides the periods of all
tasks, we can represent task periods as

Ti = ki · F, ki ∈ Z+. (18)

Migrating tasks. By Prop. 1, within any interval of length
Ti, a migrating task τi is guaranteed supply of at least⌊
Ti

F

⌋
· ui · F = ki · ui · F = Ti · ui = Ci. This implies

that no job of any migrating task will miss a deadline.
Fixed tasks. The proof of this case utilizes the following
claim.

Claim 1. For real numbers a, b > 0 and x ∈ Z+,⌊
a
x·b
⌋
≤ 1

x

⌊
a
b

⌋
.

Proof. Letting y = bab c and c = a − y · b, we
have a = y · b + c, where y ∈ Z and 0 ≤ c < b.
The latter implies 0 ≤ c

b < 1. Hence, because

x, y ∈ Z,
⌊
y+ c

b

x

⌋
=
⌊
y
x

⌋
. Thus, we have 1

x

⌊
a
b

⌋
=

y
x ≥

⌊
y
x

⌋
=
⌊
y+ c

b

x

⌋
=
⌊
y·b+c
x·b

⌋
=
⌊
a
x·b
⌋
.

We now dispense with the case of fixed tasks by contra-
diction. Let td be the first time a job of any fixed task on
processor sp misses its deadline, and let t0 be the latest time
instant before td that is idle for fixed tasks on processor sp,
i.e., all jobs of fixed tasks on processor sp released earlier
than t0 have completed by t0 and such a job is released at
t0. Within the time interval [t0, td), the demand due to the



set of fixed tasks on processor sp is at most∑
τi is a fixed task
on processor sp

⌊
td − t0
Ti

⌋
· Ci

= {by (1)}∑
τi is a fixed task
on processor sp

⌊
td − t0
Ti

⌋
· Ti · ui

= {by (18)}∑
τi is a fixed task
on processor sp

⌊
td − t0
ki · F

⌋
· ki · F · ui

≤ {by Claim 1}∑
τi is a fixed task
on processor sp

1

ki
·
⌊
td − t0
F

⌋
· ki · F · ui

= {simplifying}⌊
td − t0
F

⌋
· F ·

∑
τi is a fixed task
on processor sp

ui

= {by (4)}⌊
td − t0
F

⌋
· σfp · F.

By Prop. 2, within the time interval [t0, td), the supply guar-
anteed to the set of fixed tasks on processor sp is at least⌊

td − t0
F

⌋
· σfp · F.

This implies that a deadline is not missed at time td as
assumed.

By Thm. 5, to guarantee HRT optimality, the frame size
cannot exceed the greatest common divider (gcd) of all task
periods. The gcd could be quite small for some systems
(e.g., if at least two periods are relatively prime), yielding
high run-time overheads. However, for some systems (e.g.,
harmonic ones), the frame could be of a reasonable size,
yielding acceptable overheads.

5.2 SRT Optimality

SRT optimality is dealt with in the following theorem.

Theorem 6. Given any frame size F > 0, no job will have
tardiness exceeding F .

Proof. As before, we consider migrating and fixed tasks sep-
arately.

Migrating tasks. Consider the jth job of the migrating task
τi, denoted τi,j . Let td be the deadline of τi,j and let t0 be
the latest idle instant for task τi at or before the release of
τi,j . Also, let tF be the first time instant at or after td such
that tF − t0 is a multiple of F . Then, we have tF − td < F .

The number of jobs with deadlines at or before time td
that τi can release at or after time t0 is at most

⌊
td−t0
Ti

⌋
≤⌊

tF−t0
Ti

⌋
. The resulting demand is at most

⌊
tF−t0
Ti

⌋
· Ci ≤

(tF − t0) · ui. Because (tF − t0) is a multiple of F , by
Prop. 1, τi is guaranteed a supply of (tF − t0) · ui within
[t0, tF ). This implies that τi,j completes by time tF . Thus,
no job of a migrating task will have tardiness exceeding F .
Fixed tasks. Let td be the deadline of the jth job τi,j of the
fixed task τi and t0 be the latest idle instant for fixed tasks
on processor sp at or before the release of τi,j . Also, let tF
be the first time instant at or after td such that tF − t0 is a
multiple of F . Then, we have tF − td < F .

The number of jobs with deadlines at or before time td
that a fixed task τk on processor sp can release at or after

time t0 is at most
⌊
td−t0
Tk

⌋
≤
⌊
tF−t0
Tk

⌋
, so the total demand

due to such jobs is at most∑
τk is a fixed task
on processor sp

⌊
tF − t0
Tk

⌋
· Ck ≤ (tF − t0) ·

∑
τk is a fixed task
on processor sp

uk

= (tF − t0) · σfp .

Because (tF − t0) is a multiple of F , by Prop. 2, the fixed
tasks on processor p are guaranteed a supply of (tF−t0)·σfp
within [t0, tF ). This implies that τi,j completes by tF . Thus,
no job of a fixed task will have tardiness exceeding F .

6 Alternate Assignment Strategies
Given that at mostm tasks are migrating under EDF-tu, and
these tasks are the heaviest by utilization, two natural ques-
tions arise.
• Q1: Can we guarantee that fewer than m tasks are mi-

grating?
• Q2: Can we require lighter tasks, instead of heavier

ones, to migrate?
In this section, we provide counterexamples that show

that the answer to each question is no.
Question Q1. We show that the answer to Question Q1 is
no by showing that, for any semi-partitioned scheduler, if it
is guaranteed that there will be at most k migrating tasks for
any feasible system, then k cannot be less than m. This re-
sult follows from the following counterexample, which con-
sists of m tasks, all of which must migrate.
Ex. 5. Consider a system of m tasks, each with parame-
ters τi = (1 + ε, 1), where ε < 1/m, to be scheduled on m
uniform processors, where s1 = 1 + m · ε and si = 1 for
2 ≤ i ≤ m. Conditions (2) and (3) imply that this system
is feasible. Now, if we attempt to assign any single task as
fixed, then it must be assigned to processor s1. However, if
we do so, in order to receive enough supply, the remaining
m−1 tasks must fully use the remaining residual capacities,
i.e., they must fully utilize m− 1 processors (s2 to sm) and
meanwhile also utilize the residual capacity on s1. Because
intra-task parallelism is forbidden, this is infeasible.



The above counterexample shows that we cannot gener-
ally guarantee that fewer than m tasks will migrate. How-
ever, if we examine a specific task system, then it may in-
deed be possible to require fewer thanm tasks to migrate. In
fact, in systems that can be fully partitioned, no task will mi-
grate. Unfortunately, determining the minimum number of
migrating tasks for a specific, concrete task system is NP-
hard in the strong sense. This can be shown by transforming
from the variable-sized bin-packing problem [12].
Question Q2. The following counterexample shows that
the answer to Question Q2 is no as well.

Ex. 6. Consider n tasks to be scheduled on m uniform
processors, where s1 = 1 + (m + 1) · ε, where ε <
(m − 1)/(m + 1), and si = 1 for 2 ≤ i ≤ m. The n
tasks include m heavy ones with parameters (1 + ε, 1) and
n−m light ones with parameters (ε, n−m). Conditions (2)
and (3) imply that this system is feasible. Now, if any one
of the m heavy tasks is assigned as fixed, then it must be
fixed on processor s1. However, if we do so, the remaining
m− 1 heavy tasks cannot all be allocated shares that match
their utilizations without introducing intra-task parallelism.
Thus, the remaining system is infeasible. The formal proof
of this is somewhat tedious, so we defer it to Appendix B.

7 Evaluation
The frame size F used in EDF-tu is a tunable parameter.
For any feasible task system, tardiness will always be at
most F , and if F is set low enough, tardiness will be zero.
Given this, it would not be very interesting to experimen-
tally examine issues related to schedulability. However, for
a given task system, the Level-Algorithm-induced preemp-
tion pattern within a frame is the same regardless of its size,
and preemption frequencies over time are higher when F is
smaller. Thus, it is interesting to experimentally evaluate the
number of tasks that are required to migrate and the num-
ber of preemptions experienced by such tasks, as it is these
tasks that give rise to preemptions induced by the Level Al-
gorithm. In this section, we briefly discuss an experimental
evaluation that focuses on these two metrics.
Experimental setup. We assessed the impact of both met-
rics by randomly generating feasible task systems and by
determining for each generated system the number of mi-
grating tasks and the number of preemptions experienced
by such tasks per frame. In experimental studies that focus
on identical platforms, choosing an overall utilization cap
implicitly defines the considered multiprocessor platform.
However, in the uniform case, processor speeds must be se-
lected, and the number of such speed settings is unbounded
for a given total utilization. To reasonably constrain our ex-
periments, we considered systems of eight processors with
a total processor capacity of 36. We considered four such
platforms, with speeds as follows: π1 = {6, 6, 6, 6, 3, 3, 3,
3}, π2 = {8, 8, 4, 4, 4, 4, 2, 2}, π3 = {8, 7, 6, 5, 4, 3, 2, 1},
and π4 = {15, 3, 3, 3, 3, 3, 3, 3}. To randomly generate fea-
sible task systems, we used a framework used in a prior ex-
perimental study by us [23], which we do not describe here
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Figure 5: Number of migrating tasks.
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Figure 6: Maximum number of preemptions of migrating tasks
per frame.

due to space constraints (the conclusions below are under-
standable without knowing the precise distributions used to
generate task parameters). When using this framework, two
categories of task systems are generated: systems that have
fewer tasks but heavier tasks (by utilization), and systems
that have more tasks but lighter tasks.

For each platform and task generating pattern, we var-
ied total utilization within [0, 36] by increments of 0.5, and
for each total utilization, we generated 1,000 feasible task
systems. Fig. 5 plots the average number of migrating tasks
required for each such set of 1,000 task systems. For ev-
ery generated task system, we also simulated EDF-tu and
recorded the maximum number of preemptions per frame of
any migrating task. Fig. 6 plots the average of these maxi-
mum values for each set of 1,000 task systems. Figs. 7 and 8
show minimum and maximum values in addition to aver-
ages for the system setting with fewer but heavier tasks on
platform π1 (we omit such data for the other system set-
tings due to space constraints). Fig. 8 also contains some
additional plots, which we discuss later.
Results. As seen in Figs. 5 and 6, the number of migrat-
ing tasks is often modest, and these tasks often experience
only a moderate number of preemptions per frame. With to-
tal utilization as high as 30, the number of migrating tasks
(on average) typically is at most four, and the number of
preemptions per frame (on average) is at most five. Even in
the extreme case that the total utilization achieves the total
speed of the platform, the number of preemptions per frame
(on average) is still less than 25. While 25 preemptions per
frame may seem somewhat high, recall that in a SRT sys-
tem, we can define the frame size F to be quite large at the
cost of increasing the tardiness bound.
Other comments. In work on uniform platforms, the first
optimal scheduler for implicit-deadline sporadic task sys-
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Figure 7: Range of results for the number of migrating tasks for
fewer but heavier tasks on π1.
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tems was proposed by Funk et al. [13] as a byproduct to-
wards establishing (2) and (3) as a feasibility condition for
such systems. That algorithm also applies the Level Algo-
rithm in a frame-based way, but can require any task to
migrate. Moreover, each such task may experience O(mn)
preemptions per frame. In contrast, under EDF-tu, at most
m′ tasks migrate, where m′ ≤ m, and the number of
per-frame preemptions of such a task can be shown to be
O(m′ 2). Also, because the processor allocation table is pro-
duced offline, the actual number of such preemptions for a
specific task system can be estimated precisely, rather than
by relying on pessimistically established upper bounds. To
provide a sense of the improvement offered by EDF-tu, we
have included results for the algorithm in [13] in Fig. 8.

8 Conclusion
We have presented EDF-tu, a semi-partitioned scheduler
for uniform heterogeneous multiprocessors that can be con-
figured to be HRT- or SRT-optimal by appropriately siz-
ing a frame parameter. The configurability of EDF-tu en-
ables tradeoffs between timeliness and runtime overheads
to be explored. Developing the assignment phase for EDF-
tu required confronting a number of issues that do not arise
on identical multiprocessors. In addressing these issues, we
proposed a sufficient condition for producing a feasible task
assignment, and showed via counterexamples that alterna-
tive assignment strategies can compromise schedulability. If
the frame size F used in EDF-tu is defined to support HRT-
optimality, then the resulting preemption overheads could

be high for some systems. However, for any choice of F ,
deadline tardiness is at most F . Moreover, allocations to
migrating tasks within a frame are determined offline, so
preemption frequencies can be determine precisely, rather
than via upper bounds that may be loose.
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Appendix A: Assignment Phase Pseudo-Code

initially σfp := 0 for all p;
index tasks in non-increasing-utilization order;
index processors in non-increasing-speed order;
/* The first n−m lightest tasks are

guaranteed to be fixed via the
best-fit heuristic. If n = m, then
this for loop is skipped. */

for i := n downto m+ 1 do
Select k that sk − σfk is minimal while at least ui ;
σfk := σfk + ui;

end
/* Try to continue fixing tasks until

the fixing step is not legal or
all tasks are fixed. */

m′ := m;
isLegal := 1;
repeat

Select k that sk−σfk is minimal while at least um′ ;
last σfk := σfk ;
σfk = σfk + um′ ;
for j := 1 to m′ do

if
∑
j largest(sp − σfp ) <

∑
j largest ui then

isLegal := 0;
end

end
last m′ := m′;
m′ := m′ − 1;

until isLegal = 0 or m′ = 0;
if isLegal = 0 then

/* If the last fixing step is not
legal, restore to last feasible
assignment. */

m′ := last m′;
σfk := last σfk ;
/* Now, we have m′ migrating tasks

to be scheduled on m′

processors using a frame-based
schedule. */

for j := 1 to m′ do
zj := the jth largest (sp − σfp );

end
Use the Level Algorithm to construct the processor
allocation table for a frame;

else
In this case, there is no migrating task, and a valid
partitioned schedule can be generated by applying
the uniprocessor EDF scheduler on each processor;

end
Algorithm 1: EDF-tu assignment phase

Appendix B: Detailed Explanation for Ex. 6
Let σi,p denote the capacity allocated to τi on processor sp,
where 0 ≤ σi,p ≤ sp. Then, the portion of sp that is allo-
cated to τi is

ρi,p =
σi,p
sp

, (19)

where 0 ≤ ρi,p ≤ 1. The portion ρi,p is the needed percent-
age of CPU time on sp for τi to receive processor supply
on sp that matches its allocated capacity σi,p on sp. Thus, if
intra-task parallelism is forbidden, then the following con-
dition must hold for the system to be feasible.

m∑
p=1

ρi,p ≤ 1, for any i (20)

For illustration, consider a task that needs to utilize 70% of
the CPU time on one processor and 80% of the CPU time
on another processor. This is clearly infeasible if intra-task
parallelism is not allowed.

Now, let us examine the specific system in Ex. 6. As
shown in Ex. 6, if any one of the m heavy tasks is assigned
as fixed, then it must be fixed on processor s1. Without loss
of generality, assume that the heavy task τ1 is fixed on s1
and the remaining m− 1 heavy tasks are {τ2, τ3, . . . , τm}.
Since τ1 is fixed on s1, the other heavy tasks cannot be al-
located shares on s1 exceeding its residual capacity. Thus,

m∑
i=2

σi,1 ≤ s1 − u1. (21)

(19) and (21) imply

m∑
i=2

ρi,1 ≤ 1− u1
s1
. (22)

Moreover, by (20),
∑m
i=2

∑m
p=1 ρi,p ≤ m − 1, i.e.,∑m

i=2 ρi,1 +
∑m
i=2

∑m
p=2 ρi,p ≤ m− 1. Therefore,

m∑
i=2

m∑
p=2

ρi,p ≤ (m− 1)−
m∑
i=2

ρi,1. (23)

Thus, the allocated shares for the remainingm−1 heavy
tasks satisfy

m∑
i=2

m∑
p=1

σi,p

= {by (19)}
m∑
i=2

m∑
p=1

ρi,p · sp

= {rearranging and by sp = 1 for 2 ≤ p ≤ m as in Ex. 6}
m∑
i=2

ρi,1 · s1 +

m∑
i=2

m∑
p=2

ρi,p · 1



≤ {by (23)}
m∑
i=2

ρi,1 · s1 + (m− 1)−
m∑
i=2

ρi,1

= {rearranging}

(m− 1) +

m∑
i=2

ρi,1 · (s1 − 1)

≤ {by (22)}

(m− 1) + (1− u1
s1

) · (s1 − 1)

= {by the definitions of s1 and u1 in Ex. 6}

(m− 1) +

(
1− 1 + ε

1+(m+1)·ε

)
·(1+(m+ 1)·ε−1)

= {simplifying}

(m− 1) +
m · ε

1 + (m+ 1) · ε
· (m+ 1) · ε

= {simplifying}

(m− 1) +
m · (m+ 1) · ε
1 + (m+ 1) · ε

· ε

= {simplifying}

(m− 1) +
m

1
(m+1)·ε + 1

· ε

< {as stated in Ex. 6, ε < (m− 1)/(m+ 1)}

(m− 1) +
m

1
(m+1)·(m−1)/(m+1) + 1

· ε

= {simplifying}

(m− 1) +
m

1
m−1 + 1

· ε

= {simplifying}
(m− 1) + (m− 1) · ε,

which is the needed total share allocation of the remaining
m− 1 heavy tasks. Thus, the remaining system is not feasi-
ble if intra-task parallelism is forbidden.

Appendix C: Further Explanation of Footnote 2
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Figure 9: A correct schedule for Ex. 7.

As indicated in Footnote 2, in Thm. 3, (5) and (6) are
only a sufficient condition for feasibility. This is because (6)
is not necessary for feasibility, although the similar condi-
tion (3) is. We show this by the following counterexample.
Ex. 7. Consider scheduling a single task τ1 = (2, 1) on
two unit-speed processors. This system is clearly infeasible
since its utilization u1 = 2 > 1 holds, which violates (3).

Now, consider scheduling the same task τ1 on two other
processors, where both processors have a residual capacity
of 1, i.e., z1 = z2 = 1. Then, this system violates (6), but it
could be feasible. For example, assuming the two processors
both have an initial speed of 2, Fig. 9 is a correct schedule
for this system.


