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Abstract
A real-time multiprocessor synchronization problem is
studied herein that has not be extensively studied before,
namely, the management of replicated resources where
tasks may require multiple replicas to execute. In prior
work on replicated resources, k-exclusion locks have been
used, but this restricts tasks to lock only one replica at a
time. To motivate the need for unrestricted replica shar-
ing, two use cases are discussed that reveal an interesting
tradeoff: in one of the use cases, blocking is the domi-
nant lock-related factor impacting schedulability, while in
the other, lock/unlock overheads are. Motivated by these
use cases, three replica-allocation protocols are presented.
In the first two, the lock/unlock logic is very simple, yield-
ing low overheads, but blocking is not optimal. In the third,
blocking is optimal (ignoring constant factors), but addi-
tional lock/unlock overhead is incurred to properly order
lock requests. Experiments are presented that examine the
overhead/blocking tradeoff motivated by these protocols in
some detail.

1 Introduction
Most real-time locking protocols support only non-replicat-
ed resources. However, replicated resources arise in many
practical settings. For example, on a multicore platform
augmented with multiple graphics processing units (GPUs)
as accelerators, the pool of available GPUs may be regarded
as a replicated resource, with each GPU considered as a sin-
gle replica. Assuming that a GPU-requesting task can use
any available GPU, the problem of allocating GPUs to tasks
is equivalent to that of allocating replicas to tasks.

In prior work on real-time resource sharing, k-exclusion
locking protocols [2, 5, 17] have been devised that can be
used to support replicated resources. A k-exclusion lock ex-
tends a mutual exclusion lock by allowing up to k simul-
taneous lock holders [7]. (Thus, mutual exclusion is equiv-
alent to 1-exclusion.) A k-exclusion lock can ensure that
each of k replicas is used by only one task. For example,
GPU pools are managed in this way in GPUSync, a GPU-
management framework that has been the subject of much
recent work [3, 4, 6]. Unfortunately, when k-exclusion locks
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are used to support replication, a task can only request ac-
cess to one replica at a time: if multiple replicas were to be
allocated to the same task, then the number of simultaneous
lock holders would need to be restricted to be less than k,
and such a guarantee is not provided by a k-exclusion lock.

In this paper, we consider multiprocessor real-time lock-
ing protocols for allocating replicated resources where tasks
may request multiple replicas. As we shall see, allowing
multiple replicas to be requested creates new difficulties
with respect to how resource requests are ordered. Before
continuing, we illustrate the need for unrestricted replica
sharing by means of two use-case scenarios.

First use case: enabling multiple GPU accesses. In do-
mains such as visualization and signal and image process-
ing [11, 12, 13], researchers have proposed harnessing the
full parallelism in multi-GPU systems by supporting com-
putations that access multiple GPUs simultaneously. If in-
dividual GPUs are viewed as replicas as discussed earlier,
then such functionality would require enabling tasks to lock
multiple replicas at once.

Second use case: controlling on-chip SRAM contention.
In an ongoing industrial collaboration, we are attempting
to support soft-real-time workflows on multicore machines
where contention for on-chip SRAM memory must be kept
below a specified limit. Such a limit can be enforced by
defining a pool of “memory tokens,” determining the num-
ber of such tokens each task needs to execute (based on
analysis that indicates the SRAM contention it will cause),
and then requiring each task to be allocated its needed to-
kens before commencing execution. The token pool can be
viewed as a replicated resource, with each individual token
corresponding to a single replica. Before commencing exe-
cution, a task must first lock its needed number of replicas.

Problem variations. Motivated by these use cases, we now
discuss several variants of the problem considered in this pa-
per. To begin, note that in the GPU use case, it is important
for a task to know which individual GPUs it has been allo-
cated, while in the SRAM use case, tokens are abstract en-
tities that have no real identity. This observation motivates
us to distinguish between the problem variants of allocation
and assignment. In solving the replica allocation problem, a
task must merely be allocated a specified number of repli-
cas. In solving the replica assignment problem, the actual
identities of the allocated replicas must be known.
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Figure 1: Requests R1, R2, and R3 for three, one, and three repli-
cas, respectively, of a resource with three replicas in total. R1 is
currently satisfied, and R2 and R3 will be satisfied in increasing
index order, as shown. R4 is newly issued and can cut ahead of
R3 and be satisfied together with R2 as indicated by position P1,
or not cut ahead, as indicated by position P2.

When locking protocols are used, tasks may experience
delays due to both blocking and lock/unlock-call overheads.
In the GPU use case, blocking delays will tend to be more
impactful, while in the SRAM use case, the opposite is
true. In particular, in the GPU use case, replicas can be ex-
pected to be rather scarce (two to eight GPUs might typ-
ically exist) and GPU critical sections can be rather long
(GPU computation times can range from tens of millisec-
onds to several seconds, or even longer [3]). In contrast,
in the SRAM use case, replicas are abundant (thousands
of memory tokens might exist, with most tasks needing
fewer than 100), so blocking should be uncommon. These
observations motivate us to distinguish between blocking-
optimized and overhead-optimized locking protocols.

Blocking times versus overheads. While it would be de-
sirable to develop locking protocols that give rise to both
low blocking and low overheads, doing so is problematic in
the case of replicated resources. This is because optimizing
blocking involves resolving cutting-ahead decisions, and
this entails additional overhead. Consider, for example, the
situation shown in Fig. 1. This figure depicts four requests,
R1, . . . ,R4, for varying numbers of replicas of a resource
that has three replicas in total. Blocking relationships are de-
fined via a wait-for graph. In the depicted situation,R1 cur-
rently holds all three replicas,R2 has requested one replica
and is blocked by R1, and R3 has requested all three repli-
cas and is blocked by bothR1 andR2.R4 is a newly issued
request for one replica. It can be placed either such that it is
blocked by each of the other three requests, or blocked by
R1 and blockingR3, provided this choice does not increase
the worst-case blocking ofR3. In the latter case, we say that
R4 is allowed to cut ahead ofR3. Such cutting ahead would
allowR2 andR4 to be satisfied simultaneously.

Contributions. This paper presents multiprocessor real-
time locking protocols for replica allocation and replica as-
signment that are tailored to reduce either blocking or over-

heads for systems where tasks may lock multiple replicas si-
multaneously. Our specific contributions are fourfold. First,
in Sec. 3, we present and prove correct a wait-free algorithm
that can be applied to any replica allocation protocol to solve
the replica assignment problem. The existence of this algo-
rithm frees us from having to consider replica assignment
further. Second, in Sec. 4, we present two simple overhead-
optimized replica allocation protocols. These protocols have
very low overheads but give rise to blocking times that are
not optimal. Both protocols are good candidate solutions for
the SRAM use case, in which blocking should be rare. To
reap either protocol’s benefits analytically, holistic blocking
analysis is needed that does not grossly overestimate over-
all blocking within a considered schedulability-analysis in-
terval. We present such holistic analysis in Sec. 5. Third,
we present a blocking-optimized replica allocation protocol
that employs a cutting-ahead mechanism for which block-
ing is optimal (assuming constant factors are ignored). We
devised this algorithm as a candidate solution for the GPU
use case. Finally, we present the results of runtime experi-
ments in which the tradeoff between overhead and blocking
motivated by the considered protocols is examined in some
detail.

2 Background
In this section, we provide relevant background material.

Task model. We consider the classic sporadic real-time
task model with a task system Γ = {τ1, . . . , τn} scheduled
on m processors. An arbitrary job of τi is denoted Ji and
is scheduled using a job-level fixed-priority scheduler to set
its base priority.

Resource model. We consider k replicas of a single re-
source. To access the replicas, a job issues a request. We
consider an arbitrary request Ri of job Ji. This request re-
quires Di of the k replicas.Ri is satisfied when it holds Di

such replicas. It releases these replicas when it completes.
A request Ri will hold its required number of replicas for
at most Li time units. We define Lmax = max1≤i≤n{Li}.
As noted in Sec. 1, we distinguish between the two prob-
lem variants of replica allocation and replica assignment.
In both problem variants, Di replicas must be allocated to
Ri. However, a solution to the allocation problem is not re-
quired to return the identities of the allocated replicas, while
a solution to the assignment problem is.

Priority inversions. For ease of exposition, we limit our
attention to synchronization protocols implemented via al-
gorithms in which spinning (busy-waiting) is used to real-
ize task blocking. Furthermore, such protocols are invoked
non-preemptively: a job becomes non-preemptive just be-
fore requesting any replica and remains non-preemptive un-
til just after it releases all of its requested replicas. All of our
protocols can be converted to variants in which blocking is
realized instead by suspending blocked tasks, but we do not
have sufficient space to explain these protocol variants.

In the considered context, a job experiences spin-based
blocking (s-blocking) whenever it is forced to busy-wait [1].



Additionally, non-preemptive execution can cause priority-
inversion blocking (pi-blocking). In particular, a job is pi-
blocked if its base priority is sufficient for it to be sched-
uled, but it cannot be scheduled because some lower-priority
job is executing non-preemptively. Clearly, worst-case pi-
blocking is dependent on worst-case s-blocking. We denote
the worst-case s-blocking for a requestRi as si.

Cutting-ahead mechanisms. Fundamentally, all of the al-
location algorithms considered in this paper function by
determining the order in which requests will be satisfied.
Generally speaking, such an order will be a partial or-
der, because with a replicated resource, multiple requests
potentially can be satisfied concurrently. Unnecessary s-
blocking can be reduced by employing a cutting-ahead
mechanism [8] that sometimes allows a newly issued re-
quest to be ordered before prior requests. By allowing a
requestRi to cut ahead of others, the s-blockingRi experi-
ences is decreased. Regardless of how requests are ordered,
we require two conditions to be upheld: safety and delay
preservation.

Delay-preserving algorithms and optimality. The term
safety merely means that the satisfication of requests must
be done in a way that ensures that at most k replicas are allo-
cated at any time. Delay preservation is defined with respect
to request insertions: we say that a request is inserted when
a shared data structure is updated on account of that request,
and this update determines how this request will be ordered
with respect to other requests. An insertion of a request is
delay preserving if it does not increase the worst-case s-
blocking time of any existing request. While the necessity of
maintaining safety is essential to any system, delay preser-
vation is vital to our analysis of s-blocking bounds. When
considering allocation algorithms in this paper, we limit at-
tention to algorithms that are delay-preserving. We define
such an algorithm A to be optimal if and only if it min-
imizes worst-case s-blocking for any new request Ri; that
is, it is not possible to insertRi into the partial order defined
by existing requests in a way that results in less worst-case
s-blocking than underA while still maintaining the require-
ment of being delay-preserving.

3 Allocation to Assignment
In this section, we show how to solve the assignment prob-
lem given a solution to the allocation problem. Specifi-
cally, assuming the latter solution supports two routines,
ALLOCATE and UNALLOCATE, we show how to imple-
ment two corresponding routines for the former problem,
ASSIGN and UNASSIGN. This implementation, which is
shown in Alg. 1, uses a shared array,1 Replica, of k test-and-
set bits,2 where each such bit represents a distinct replica.
As seen in the code, a replica is acquired by performing a
successful test-and-set operation on its corresponding bit,

1For greater clarity, we capitalize shared variable names and denote
private variable names in lowercase.

2The operation test&set(B) sets the bit B to be 1 and returns its original
value. Such an operation is “successful” if the return value is 0.

and is released by clearing that bit. Note that the code out-
side of the ALLOCATE and UNALLOCATE routines is en-
tirely wait-free. (Depending on the application, alternative
approaches such as a free list or a buddy system could be
used that could potentially be more efficient. Our goal here
is to provide an approach that is correct in any application
context, given a solution to the allocation problem.)

The correctness of Alg. 1 can be shown via an invariant-
based argument. The required invariant is given in Expres-
sion (1) below. The two termsN [i] and S[i] defined next are
used in (1). Each request scans Replica only once, so N [i]
gives the number of available replicas that could still be as-
signed to Ri. S[i] is the set of (indices of) other requests
currently scanning within the same suffix of Replica as Ri.
The quantification in (1) is assumed to be over those tasks i
that are executing within Lines 4–8 in Alg. 1 (including the
critical section between Lines 6 and 7).

N [i] = |{p : p[i] ≤ p < k :: Replica[p] = 0}|

S[i] = {j : j 6= i :: p[i] ≤ p[j]}

(∀i :: (N [i]−
∑

j∈S[i]

rem[j]) ≥ rem[i]) (1)

The invariance of (1) can be shown via a simple inductive
proof: it holds initially and is never falsified.3 The correct-
ness of Alg. 1 follows as a result, because (1) implies that,
as a request Ri is scanning Replica, it is guaranteed that
there are sufficiently many available replicas “upstream” of
its current scan position to fulfill its remaining replica needs.
Due to space constraints, we do not provide formal proofs of
these properties here. Instead, we have opted to consider an
example that illustrates some of the more interesting corner
cases that arise when showing that (1) holds.
Ex. 1. We consider four requests, Ru, Rv , Rw, and Rx,
in a system with k = 10 replicas, indexed from 0 to 9,
where the number of replicas required per request is given
by Du = 3, Dv = 3, Dw = 2, and Dx = 4, respectively.
Fig. 2 shows several snapshots of the Replica array, with
each request’s current position (given by its p[−] variable)
as it scans the array labeled above the array. Each array en-
try either is 0 or is labeled by the index of the request that
has set it to 1. In discussing these snapshots, we refer to
various instantiations of (1). (1) is actually a family of in-
variants, one per request, as given by the quantified variable
i. When we refer to an instantiation for some requestRz , we
are referring to the quantified inner expression with i← z.

In Fig. 2(a), Rx has reserved three replicas and has one
more to reserve. Rw has finished executing ASSIGN(w, 2)
and is now in its critical section.Rv also requires one more
replica. Finally,Ru has called ALLOCATE(u, 3) and is wait-
ing for that call to complete. Nine replicas are currently allo-

3In formally reasoning about this code, we assume that each labeled
statement is atomic. Each such statement references at most one shared
variable, or is an invocation of a routine, the specification of which allows
us to assume atomic execution. Thus, this assumption is easily realized in
practice. Such atomicity assumptions are often made in reasoning about
concurrent algorithms to simplify analysis.



Algorithm 1 Allocation to Assignment
Replica: array 0 to k − 1 of 0..1 initially 0 /∗ shared ∗/
p[i], rem[i]: 0..k /∗ private toRi ∗/
procedure ASSIGN(i: 1..n, requested: 1..k)
1: ALLOCATE(i, requested)
2: p[i]← 0
3: rem[i]← requested
4: while rem[i] > 0 do
5: if test&set(Replica[p[i]]) = 0 then

assign replica p[i] toRi

rem[i]← rem[i]− 1
end if

6: p[i]← p[i] + 1
end while

end procedure
procedure UNASSIGN(i: 1..n, requested: 1..k)
7: for each p[i] where replica p[i] was assigned toRi do
8: Replica[p[i]]← 0

end for
9: UNALLOCATE(i, requested)
end procedure

cated (though some are still unassigned), so this call will not
return until one of the other requests unallocates its replicas.
Note that all relevant instantiations of (1) hold.

In Fig. 2(b), Rw has freed all of its replicas by complet-
ing an invocation of UNASSIGN(w, 2). (1) is no longer ap-
plicable to request Rw because it is no longer executing
within Lines 4–8. For Rv , N [v] increases, clearly main-
taining request Rv’s instantiation of (1). The instantiation
for request Rx is not affected in any way by the comple-
tion of Rw. Additionally, Rx has reserved another replica,
so rem[x] = 0 now holds and its invocation ASSIGN(x, 4)
is completed. Ru has now been allocated (but not yet as-
signed) itsDu = 3 resources. This did not invalidate request
Ru’s instantiation of (1). Additionally, Ru moved forward
to position p[u] = 1 after determining that replica 0 was
already reserved. This movement also did not invalidate re-
questRu’s instantiation of (1).

In Fig. 2(c), p[u] has been incremented to equal p[v]. Just
before the increment, both N [u] − rem[v] ≥ rem[u] and
N [v] − rem[v] ≥ rem[v] held, by (1) (note that rem[w] and
rem[x] are both 0). Note also that immediately before the
increment, N [v] = N [u] held. Furthermore, neither N [v]
nor N [u] was affected by the increment, nor were rem[u]
and rem[v]. Thus, all instantiations of (1) continue to hold.

In Fig. 2(d), Ru has acquired resource 4 by means of
a successful test&set operation on position p[u] = 4. This
does not affect request Ru’s instantiation of (1) as the re-
source acquisition decrements both sides of the inequality
for this instantiation. The instantiation for requestRv is also
not invalidated, because bothN [v] and rem[u] are decreased
by one, resulting in no net change to the left side of the in-
equality.

In Fig. 2(e), Ru has reserved replica 5 and Rv has re-
served replica 9. These reservations maintain all instantia-
tions of (1).
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Figure 2: Several snapshots of the Replica array as requests Ru,
Rv , Rw, and Rx move through the code of Alg. 1.

4 Overhead-Optimized Allocation
Having just shown that the assignment problem can be
solved given any solution to the allocation problem, we now
turn our attention to the latter problem. In this section, we
consider solutions to the allocation problem for which lock
and unlock overheads are low. As we shall see, these so-
lutions are not optimal. Later, in Sec. 6, we show how to
eliminate unnecessary blocking and achieve optimality. As
we shall see, this improvement comes at the expense of sig-
nificantly higher overheads.

Our first solution, which is given in Alg. 2, is a varia-
tion of a ticket lock that uses two unbounded shared coun-
ters, Num requested and Num released. As their names sug-
gest, these counters indicate the total number of replicas re-
quested and released, respectively, up to the current time.
These counters are updated atomically using fetch&add in-
structions.4 As seen in the ALLOCATE routine, a requestRi

must block5 until enough replicas have been released to ac-
commodate all replica requests prior to and including Ri.
Using this algorithm, a non-blocked request can acquire and
release its needed resources by performing at most ten ma-
chine instructions. This low overhead comes at the expense
of needing to use unbounded counters to preclude counter
overflow, which could compromise safety. In many appli-
cation domains, however, bounded counters would suffice
because such counters can be guaranteed to not overflow
during a system’s lifetime. For example, a 64-bit counter
that is incremented by 100 every ten nanoseconds will not
overflow for 58.5 years.

If counter overflow is a potential concern, then our sec-
ond solution, given in Alg. 3, can be used. This solu-
tion is actually nothing more than a counting semaphore
implemented using busy-waiting. The shared variable
Num available gives the number of replicas currently avail-
able. The ALLOCATE and UNALLOCATE routines imple-
ment the semaphore P and V operations. These operations

4The operation fetch&add(X, v) performs the assignment X ← X+v
and returns the original value of X .

5We assume all wait until constructs are implemented by busy-waiting.



Algorithm 2 Overhead-OptimizedProtocol:Unbounded
Num requested : 0..∞ initially 0 /∗ shared ∗/
Num released : 0..∞ initially 0 /∗ shared ∗/
num reqd incl me: 0..∞ initially 0 /∗ private to each request∗/
num releases required: 0..∞ initially 0 /∗ private to each request∗/
procedure ALLOCATE(needed : 1..k)
1: num reqd incl me← fetch&add(Num requested, needed)+needed
2: num releases required← num reqd incl me− k
3: wait until Num released ≥ num releases required
end procedure
procedure UNALLOCATE(needed : 1..k)
4: fetch&add(Num released, needed)
end procedure

Algorithm 3 Overhead-Optimized Protocol: Bounded
Num available : 0..k initially 0 /∗ shared ∗/
procedure ALLOCATE(needed : 1..k)
1: Acquire(Queue lock)
2: wait until Num available− needed ≥ 0
3: fetch&add(Num available,−needed)
4: Release(Queue lock)
end procedure
procedure UNALLOCATE(needed : 1..k)
5: fetch&add(Num available, needed)
end procedure

must be atomic. Atomicity is ensured in the ALLOCATE rou-
tine by using an underlying FIFO queue-based spin lock [9].
Atomicity is ensured in the UNALLOCATE routine by using
an atomic synchronization primitive.

Theorem 1. Neither Alg. 2 nor Alg. 3 is optimal.
Proof. Consider requests R1, R2, R3, R4 and R5, which
require D1 = 6, D2 = 5, D3 = 6, D4 = 5, and D5 = 6
replicas, respectively, in a system with k = 10 replicas in
total. Suppose that each of these requests executes for at
most one time unit (Li = 1 for each i) and that they are
issued in increasing index order. Then, under either Alg. 2
or Alg. 3, they would be ordered as in the wait-for graph
shown in Fig. 3. Note that R2 cannot be satisfied until R1

completes, R3 cannot be satisfied until R2 completes, and
so on. Now, consider a new requestR6 that requiresD6 = 5
replicas for up to one time unit (L6 = 1). Under either al-
gorithm, R6 can be satisfied only after R5 completes, i.e.
it would be inserted into the position denoted as P2 in the
wait-for graph. However, R6 could be satisfied simultane-
ously with R2 (i.e., be inserted into position P1) without
violating the requirement of being delay-preserving. Thus,
neither algorithm is optimal.

Note that R6 cannot be satisfied simultaneously with
R2 in the request sequence considered above because nei-
ther Alg. 2 nor Alg. 3 provides a cutting-ahead mechanism.

From a schedulability perspective, applying either Alg. 2
or Alg. 3 requires bounds on s-blocking times. Under either
algorithm, a coarse bound of si = (m− 1) · Lmax applies,
because a given request can be s-blocked by at most m −
1 other requests (since requests execute non-preemptively),
and in the worst case, these other requests execute without
concurrency, for up to Lmax time units each.

R2 P1

R1

R3
D3 = 6
L3 = 1

D6 = 5
L6 = 1

D1 = 6
L1 = 1

D2 = 5
L2 = 1

R4

R5

P2

R6

cutting 
ahead, 
Alg. 4

Alg. 2 & 3

D5 = 6
L5 = 1

D4 = 5
L4 = 1

Figure 3: Existing requests R1, R2, R3, R4 and R5 and possible
positions P1 and P2 into which R6 could be inserted.

Generally speaking, obtaining tight blocking bounds for
real-time synchronization protocols can be difficult. In an
online appendix, we prove that the problem of computing
tight s-blocking bounds for Algs. 2 and 3 is NP-hard in the
strong sense [10]. (This problem has connections to non-
preemptive gang scheduling.) If tight bounds are needed,
then the following exponential-time method can be used.
Given a specific ordered sequence of m− 1 requests issued
prior to a particular request Ri, we can simulate the block-
ing sequence in pseudo-polynomial time to obtain a tight
s-blocking bound for Ri in this sequence. To determine a
general bound, however, we have to examine all possible
ordered sequences of m − 1 requests. This takes exponen-
tial time, because the number of possible permutations of
m−1 requests taken from n−1 other tasks, with at most one
taken from any job, is at least

(
n−1
m−1

)
· (m − 1)! (and could

be greater if jobs make multiple requests). If the number
of permutations that need to be considered is not too large,
then this method might be acceptable.

5 Holistic S-Blocking Analysis
We envision the overhead-optimized protocols just de-
scribed to be of interest in settings like the SRAM use
case where blocking should be rare. In such settings, over-
heads will tend to impact schedulability more than block-
ing, provided we are able to reap the benefits of rare block-
ing analytically. In particular, if worst-case s-blocking is
pessimistically assumed for every request in schedulabil-
ity analysis, then overall s-blocking will be vastly over-
estimated.

In this section, we present holistic s-blocking analysis
that avoids such pessimism. (Our analysis was inspired by
recent holistic blocking analysis presented by Ward [15],
although the framework considered here is somewhat dif-
ferent.) Specifically, we show how to upper bound overall



s-blocking for a sequence of requests, R1, R2, · · · , Rn. Re-
call that each request Ri needs Di replicas to be satisfied
and will hold its needed replicas for at most Li time units.
Due to space constraints, we consider only Alg. 2, though
similar analysis can be applied to Alg. 3.

Def. 1. (Aggregate Replica Execution Time) If a request
executes for t time units while holding x replicas, then we
say that it has an Aggregate Replica Execution Time (ARET)
of x · t.

Clearly, the ARET of each request Ri is at most Di · Li.
Thus, letting S denote the total ARET for the entire se-
quence of requests, we have

S ≤
∑
i

DiLi. (2)

Def. 2. (Direct and Indirect S-Blocking) In Alg. 2, a request
experiences direct s-blocking if it is blocked at Line 3, and
among those requests blocked at Line 3, the value of its pri-
vate variable num releases required is the smallest. A re-
quest that is blocked at Line 3 for which the latter condition
does not hold is said to experience indirect s-blocking.

Lemma 1. At any time instant, if some request is s-
blocked, then there must exist a unique request that expe-
riences direct s-blocking.

Proof. Follows from Def. 2.
Let bi be the total duration of time for which request Ri

experiences direct s-blocking.

Lemma 2. The total ARET over all time instants when Ri

experiences direct s-blocking is at least bi(k −Di + 1).

Proof. When Ri experiences direct s-blocking, there are at
most (Di− 1) replicas available. That is, at least k− (Di−
1) = (k −Di + 1) replicas are held by other requests that
are currently executing. Thus, the lemma follows.

By Lemma 2,

S ≥
∑
i

bi(k −Di + 1) ≥
∑
i

bi(k −Dmax + 1), (3)

where Dmax = max1≤i≤n{Di}.

Lemma 3. The total time duration when at least one request
experiences s-blocking is

∑
i bi. Furthermore,∑

i

bi ≤
∑

iDiLi

k −Dmax + 1
. (4)

Proof. The first part of the lemma follows from Lemma 1.
The second part of the lemma follows from (2) and (3).

Let Dj denote the sum of j largest values in {Di}. In
the following lemma, q denotes the minimum number of
requests that must hold replicas for other requests to poten-
tially block; q = m implies that no blocking will occur.

Lemma 4. If Dm ≤ k, then let q = m; otherwise, let q
be the largest positive integer (1 ≤ q ≤ m − 1) such that

Dq ≤ k. Then, at most m − q requests can simultaneously
busy-wait.
Proof. To begin, note that D1 ≤ k holds. Otherwise, there
exists a request that will never be satisfied in any case. Thus,
the two cases for q stated in the lemma are exhaustive. The
first case, Dm ≤ k, is straightforward, as no request would
ever busy-wait in this case (i.e., q = m), since there are
only m processors. In the remainder of the proof, we focus
on the second case. Suppose that there are at leastm−q+1
requests that are simultaneously busy-waiting and Ri is the
one that experiences direct s-blocking. Because requests are
assumed to execute non-preemptively, there are at mostm−
(m− q+ 1) = q− 1 requests holding replicas. Because Ri

experiences direct s-blocking, these at most q − 1 currently
executing requests hold at least k −Di + 1 replicas. Thus,
includingRi, there are at most q requests that in total require
k + 1 replicas. This contradicts the definition of q, which
implies Dq ≤ k.

Theorem 2. The total s-blocking experienced by the se-
quence of requests is at most

(m− q)
∑
i

bi ≤
(m− q)

∑
iDiLi

k −Dmax + 1
,

where q is as defined in Lemma 4.
Proof. Follows directly from Lemmas 3 and 4.

Ex. 2. Consider a sequence of n requests in a system with
k = m−1, where for each request Ri, Di = 1 and Li = L.
Then, by Lemma 4, q = m − 1, and by Theorem. 2, total
s-blocking is at most

(m− (m− 1)) · nL
m− 1− 1 + 1

=
nL

m− 1
.

In contrast, if we were to charge each request a coarse
per-request s-blocking bound of (m−1) ·L, then this would
yield a total s-blocking bound of (m − 1) · nL. Note that a
per-request bound of (m−1)·L does not take the potential of
concurrent request satisfaction into account. Taking this into
account yields a per-request bound of L. This yields a total
s-blocking bound of nL for the entire sequence, which is
still inferior to that derived above using our holistic analysis.

6 Blocking-Optimized Allocation
In considering the allocation problem so far, we have fo-
cused on solutions designed to yield low overheads. How-
ever, as we saw in Thm. 1, these solutions are not opti-
mal and can result in unnecessary s-blocking. Excessive s-
blocking can lead to poor schedulability in use cases (such
as the GPU use case mentioned in Sec. 1) where tasks may
block frequently and/or for relatively long durations. In this
section, we present a blocking-optimized allocation algo-
rithm that was designed for such use cases and employs a
cutting-ahead mechanism. As we shall see, enabling lower
s-blocking comes at the expense of higher overheads.

Both of our overhead-optimized algorithms (Algs. 2



and 3) are based on known synchronization constructs,
namely, ticket locks and counting semaphores. The
blocking-optimized algorithm presented in this section is
also based on a known idea, namely, that of a timing wheel.
Timing wheels were introduced to efficiently multiplex mul-
tiple timers within an operating system [14]. Ignoring cer-
tain pragmatic details, our blocking-optimized algorithm
can be viewed as an approach that merely involves setting
timers: instead of blocking until being released by some
other request, each request instead sets a timer that expires
when its needed replicas will be available. However, we
cannot use the concept of a timing wheel directly to sup-
port the needed timers, because in our case, the manner in
which a timer is set depends on previously set timers. Thus,
we must modify the concept of a timing wheel for our pur-
poses. So that our modifications are understandable, we first
give a brief overview of timing wheels.

Timing wheels. Timing wheels enable multiple timers to
be supported in a way that allows any timer to be started or
stopped in O(1) time. A timing wheel is a circular buffer
of slots, each representing a discrete segment of time. For
example, if the maintenance of a timing wheel occurs af-
ter an interrupt from a hardware clock that is issued every
millisecond, then each timing wheel slot represents a 1ms
time interval. While timing wheels can be optimized for var-
ious scenarios by the use of trees, linked lists, or additional
queues, or by employing timing wheels hierarchically, the
basic concept is quite simple: the granularity of time is given
by the slot length, and timers that expire in the same slot are
stored and processed together [14].

Basic allocation algorithm description. Ignoring certain
technicalities for now, our blocking-optimized algorithm,
shown in Alg. 4, functions as follows. A timing wheel, given
by the array Timing wheel, is used, where the slot length is
given by the parameter Slot size. The array’s length (i.e., to-
tal number of slots) is determined in a way that ensures that
“wrapping” causes no problems, as explained below. Each
Timing wheel entry is actually a counter that indicates the
number of available replicas in the corresponding slot.

In considering the ALLOCATE and UNALLOCATE rou-
tines, assume for now that these routines take zero time to
execute. As before with Alg. 3, an underlying FIFO queue-
based spin lock is used to ensure that these routines execute
atomically (Lines 1, 8, 12, and 18). In Line 3 of ALLOCATE,
a sequence of consecutive slots in Timing wheel is found
that can accommodate the given request Ri. Here and later
in the code, we use the notation Slot set(s, n) as a shorthand
for the set of n slots {s, s⊕1, s⊕2, ..., s⊕ (n−1)} in Tim-
ing wheel, where⊕ represents addition modulo-Size (as ex-
plained later, Size is the size of Timing wheel). After a suit-
able set of slots is acquired, their counters are decremented
by Di in Lines 5-6. The request Ri then s-blocks in Line 9
until its needed replicas are available by busy-waiting until
its first acquired slot corresponds to the current time (ignor-
ing the variable Delta for now). This busy-waiting corre-
sponds to waiting for a timer expiration. In the UNALLO-
CATE routine, the acquired replicas are freed in Lines 13-14

Algorithm 4 Blocking-Optimized Protocol
Size : constant /∗ shared ∗/
Slot size : constant /∗ shared ∗/
Timing wheel : array 0 to Size−1 of 0..k initially k /∗shared∗/
Delta : 0..∞ initially 0 /∗ shared ∗/
Num available : 0..k initially 0 /∗ shared ∗/
Pending requests : 0..m initially 0 /∗ shared ∗/
start time : 0..∞ initially 0 /∗ private to each request ∗/
start slot : 0..Size initially 0 /∗ private to each request ∗/
j : 0..∞ initially 0 /∗ private to each request ∗/
t : 0..∞ initially 0 /∗ private to each request ∗/
num slots : 0..d Lmax

Slot size einitially 0 /∗ private to each request ∗/
procedure ALLOCATE(i : 1..m)
1: Acquire(Queue lock)
2: num slots← d Li

Slot size e
3: start time← min t s.t. t ≥ get time() + Delta and

Timing wheel[j] ≥ Di for
j ∈ Slot set(t, num slots)

4: start slot← d start time
Slot size e mod Size

5: for j ∈ Slot set(start slot, num slots) do
6: Timing wheel[j]← Timing wheel[j]−Di

end for
7: Pending reqeusts← Pending requests + 1
8: Release(Queue lock)
9: wait until start time− get time()− Delta ≤ 0
10: if fetch&add(Num available,−Di)−Di < 0 then
11: return− 1

end if
end procedure
procedure UNALLOCATE(i : 1..m)
12: Acquire(Queue lock)
13: for j ∈ Slot set(start slot, num slots) do
14: Timing wheel[j]← Timing wheel[j] +Di

end for
15: Pending reqeusts← Pending requests− 1
16: Num available← Num available +Di

17: Set delta()
18: Release(Queue lock)
end procedure
procedure Set delta ()
19: if Pending requests = 0 then
20: Delta← 0
21: else if Num available = k then
22: Delta← min t s.t. ∃ a request with

start time− get time()− t = 0
23: end if
end procedure

by incrementing the corresponding per-slot counters by Di.
Having presented a high-level description of the algo-

rithm, we now delve into various technicalities ignored so
far, after which we present an example that illustrates how
cutting ahead is supported by the algorithm.
Dealing with overrunning requests. In Alg. 4, a request
blocks until its needed replicas are available by waiting for
a timer to expire. The timer expiration time is determined
based on the execution times of previous requests, specif-
ically, the Li value of each such request Ri. If Ri were
to overrun its specified worst-case lock-holding time of Li,
then safety could be compromised. Note that such an over-
run indicates that flawed timing analysis was employed,
and as a result, any corresponding schedulability analysis
is flawed as well. Still, it would be unwise to allow such an
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Figure 4: Depiction of the duration of R1 and R3 and the waiting
of R2 with (a) worst-case blocking enforced and (b) the reduction
of such blocking by incrementing Delta.

analysis flaw to be magnified by allowing the system’s state
to be corrupted. The check in Line 10 of ALLOCATE guards
against such corruption. Specifically, if Line 11 is reached,
then an overrun must have occurred, because some replica
that should have been available at this point is still being
held. In this case, an error code is returned, which allows
the invoking task to abort its request.

Improving runtime performance. In the discussion
above, we considered the possibility of a request Ri over-
running its Li value. Given that these values represent
worst-case lock-holding times, it is much more likely that
these values are underrun, perhaps significantly. This possi-
bility reveals a significant disadvantage of using a timer-
based approach: a request may be forced to block for a
worst-case amount of time even when the replicas it requires
have already been released. Such a situation is depicted in
Fig. 4(a), in which R2 waits to begin executing until time
20ms , even though R1 and R3 have both completed. From
a schedulability point of view, such unnecessary blocking
is not problematic at all, but from the perspective of run-
time performance, eliminating unnecessary blocking would
be highly desirable.

In Alg. 4, such unnecessary blocking is ameliorated
through the introduction of the variable Delta, which, when
incremented, has the effect of allowing time to be instanta-
neously advanced. In particular, while Timing wheel is in-
dexed in Slot size increments, each request actually waits
to begin based on the current time plus Delta. If Delta in-
creases, any waiting requests will be satisfied that much ear-
lier than originally expected. Thus, incrementing Delta has
the effect of shifting time ahead. With this modification, re-
quests must be inserted into Timing wheel based on the cur-
rent time plus Delta.

The value of Delta is updated in the routine Set delta.
When invoked by a request, this routine will either in-
crement Delta, reset it to zero, or leave it unchanged. If
Pending requests = 0, then Delta is reset to zero. Other-
wise, if Num available is less than k, then no change is
made to Delta, as there is at least one request Ri that, if
time were to advance, might be deemed to have overrun
its Li bound, regardless of whether it actually did so. Fi-
nally, if neither of these conditions holds, then Delta can
be increased. In this case, it is increased by an amount that

ensures that the current time plus Delta equals the small-
est start time value of any non-satisfied request. Fig. 4(b)
demonstrates this, as R3 sets Delta = 6 and R2 becomes
satisfied immediately.
Determining a safe bound on the size of Timing wheel.
We denote the total number of slots in Timing wheel by
the parameter Size. A safe upper bound on Size can be de-
termined as follows. Because requests are executed non-
preemptively, there can be at most m active requests at
any time, each executing for at most Lmax time units.
Each such request can require at most d Lmax

Slot sizee consecu-
tive slots. To determine the size of Timing wheel required
in the worst case, we can consider inserting a request Ri

into Timing wheel that requires d Lmax

Slot sizee consecutive slots
with m− 1 requests already inserted. In the worst case, the
existing requests will each use d Lmax

Slot sizee slots and be sepa-
rated by d Lmax

Slot sizee − 1 unused slots. As a result, with only
(m − 1)(2d Lmax

Slot sizee − 1) slots it may be impossible to in-
sert Ri. However, adding a single additional slot enables
Ri to be inserted, as then at least one “gap” between ex-
isting requests will have d Lmax

Slot sizee unoccupied slots. Thus,
with at least (m− 1)(2d Lmax

Slot sizee − 1) + 1 slots in total, any
new request can be inserted. Thus, Size can be set equal to
(m− 1)(2d Lmax

Slot sizee − 1) + 1.
Accounting for the fact that ALLOCATE and UNALLO-
CATE do not take zero time. In reality, the ALLOCATE and
UNALLOCATE routines do not take zero time. However, the
execution times of these routines can be easily accounted
for by simply inflating each Li term by the worst-case exe-
cution time of both ALLOCATE and UNALLOCATE.

Ignoring constant factors, using Alg. 4 instead of Alg. 2
or 3 can lessen s-blocking times. According to the following
theorem, Alg. 4 is in fact optimal under certain ideal condi-
tions. (Recall from Sec. 2 that we consider the issue of op-
timality only with respect to delay-preserving algorithms.)

Theorem 3. If requests are initiated only at slot boundaries,
ALLOCATE and UNALLOCATE take zero time, and Slot size
is defined so that every Li is a multiple of Slot size, then
Alg. 4 is optimal.

Proof. Suppose a request Ri is inserted into the partial or-
der in a position that does not minimize its worst-case s-
blocking. Then there exists an earlier slot boundary at which
it could have been satisfied. However, since Alg. 4 begins
searching for a safe, delay-preserving position into which
Ri can be inserted starting with the first future slot bound-
ary and then considering slots in increasing order,Ri would
have been inserted at this earlier slot boundary.

Corollary 1. If ALLOCATE and UNALLOCATE take zero
time and Slot size is selected to be arbitrarily small, then
Alg. 4 is optimal.

In an online appendix, we prove that the problem of
computing tight s-blocking bounds for Alg. 4 is NP-hard
in the strong sense [10]. (As with Algs. 2 and 3, there are
connections here to non-preemptive gang scheduling.) Such
bounds can be computed in exponential time in a similar



Algorithm 5 Shortest Queue Protocol
procedure ALLOCATE(needed : 1..k)
1: Acquire(Queue lock)
2: enqueueRi on shortest Di queues
3: Release(Queue lock)
4: wait until Ri is at the head of each of its chosen queues
end procedure
procedure UNALLOCATE(needed : 1..k)
5: Acquire(Queue lock)
6: dequeueRi from all queues
7: Release(Queue lock)
end procedure

manner as explained previously in Sec. 4 for Algs. 2 and 3.
However, the calculation of the s-blocking experienced by a
request Ri given a fixed sequence of m − 1 prior requests
(obviously) must be based on Alg. 4.

Under the ideal conditions expressed in Cor. 1, s-
blocking under Alg. 4 can be no worse than under Algs. 2
and 3. As the following example shows, the cutting-ahead
mechanism used in Alg. 4 can result in s-blocking bounds
that are actually lower.

Ex. 3. Consider again the task system presented in the proof
of Thm. 1 and assume the ideal conditions expressed in
Thm. 3. Using either Alg. 2 or 3, R6 would experience 5
time units of s-blocking. If the pre-existing requests shown
in Fig. 3 were ordered as shown, then under Alg. 4, R6

would be inserted into position P2 and experience only
1 time unit of blocking. In fact, under Alg. 4, all of the
even-indexed requests would have similarly been able to
cut ahead and be satisfied together in pairs. By considering
all possible request sequences,R6’s worst s-blocking under
Alg. 4 can be shown to be 4 time units.

7 Experimental Evaluation
To evaluate Algs. 2, 3, and 4, we conducted a series of ex-
periments in which we measured relevant overheads and
blocking times. We performed these experiments on a dual-
socket 18-cores-per-socket Intel Xeon E5-2699 platform.
We also compared our algorithms to a pre-existing algo-
rithm that was briefly sketched in a prior paper on hardware
management [16]. This prior algorithm, which was not op-
timized for either overheads or blocking, is shown in Alg. 5.

Measuring overheads and blocking. We instrumented
each ALLOCATE and UNALLOCATE routine to record the
total spinning time and total execution time of each routine.
The s-blocking experienced by a request is given by the to-
tal spinning time across both routines (recall that some of
the UNALLOCATE routines require acquiring a spin lock).
The overhead associated with the request is given by the to-
tal execution time of both routines minus the total spinning
time of both routines. We measured s-blocking and over-
heads as a function of a number of parameters, including
critical-section length (Li), replica count (k), the number of
contending tasks (n), and the number of cores (m). Tasks
were statically pinned to cores (thus, n = m) and were
assigned to the same socket for core counts that allowed

such an assignment. (Tasking pinning is motivated by the
assumption that requests execution non-preemptively.) Each
task was defined to invoke ALLOCATE and then UNALLO-
CATE in a tight loop 1,000 times, with a critical section of a
specified length executed between these calls. In each given
experiment, we recorded the 99th percentile of the recorded
s-blocking and overhead values to obtain worst-case results
while filtering for any spurious behavior (e.g., perturbations
caused by interrupts).
Parameters. In our experiments, we varied various param-
eters, including those mentioned above (Li, k, and n). Be-
cause worst-case critical section lengths (Li) must be based
on timing analysis, which can be pessimistic, we also in-
cluded a parameter cs ratio that indicates the proportion of
Li for which a requestRi actually executes.
Results. Due to space constraints, we only present graphs
for a subset of our collected data here; the full set of graphs
is available in an online appendix [10]. The following ob-
servation is supported by the range of data we collected.
Obs. 1. As expected, overheads under Algs. 2 and 3 were
substantially lower than under Algs. 4 or 5.

Across all of the experiments we conducted, overheads
under Algs. 2 and 3 tended to be at most 0.35µs on average
and at most 0.49µs in the worst case. In contrast, overheads
under Alg. 4 tended to range within [1.4, 8.8]µs on average
and within [2.2, 11.8]µs in the worst case, and under Alg. 5
within [0.5, 36]µs on average and within [1.7, 105]µs in the
worst case. (The overheads of Algs. 4 and 5 could be poten-
tially reduced with further work.)
Obs. 2. In most of the experimental scenarios that we ex-
amined, all four algorithms caused comparable s-blocking.

While Alg. 4 has a clear advantage in pathological cases,
a typical release pattern of requests does not allow signifi-
cant cutting ahead. Thus, the ordering of requests generated
by Alg. 4 in our experimental framework was very similar
to that generated by any of Algs. 2, 3, or 5.

Our remaining observations are supported by the graphs
given in Fig. 5. This figure plots s-blocking data for each
considered algorithm as a function of cs ratio. This data
comes from two experimental scenarios, referred to here
as the low-contention scenario (reflective of the SRAM use
case mentioned in Sec. 1) and the high-contention scenario
(reflective of the GPU use case), respectively. These scenar-
ios are primarily distinguished by the difference in the ratio
of Di to k. Further, in the latter scenario, we structured the
release of requests based on Di values so that cutting ahead
could often occur and would be highly beneficial. In the
low-contention scenario, we defined n = 18, Di ∈ [1, 9],
and k = 50. In contrast, in the high-contention scenario,
we defined k = 10 and n = 18 and set Di to either 2 or
9. (These scenarios and further details concerning how our
measurements were obtained are more fully described on-
line [10].)
Obs. 3. In the low-contention scenario, s-blocking was sub-
stantially lower under Algs. 2 and 3 than under Algs. 4 and
5.
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Figure 5: Blocking times as a function of cs ratio. The top-row (resp., bottom-row) graphs correspond to the low-contention (resp.,
high-contention) scenario. The left (resp., right) column gives average-case (resp., worst-case) value.

As seen in insets (a) and (b) of Fig. 5, Algs. 2 and 3 were
superior both in the average case and in the worst case. This
data suggests that the extra overhead incurred under Alg. 4
and the slot-oriented waiting used under it have a detrimen-
tal impact in this scenario. Alg. 5 also performs poorly as
the maintenance of Di queues adds significant overhead.

Obs. 4. In the high-contention scenario, s-blocking was
generally lower under Alg. 4 than under Algs. 2, 3, and 5.

The data in insets (c) and (d) suggests that cutting ahead
had a significant positive impact. However, to reap a schedu-
lability benefit from cutting ahead, it must be possible to
prove that cutting ahead happens in the worst case. In our
experiments, this is not possible, because we have no no-
tion of a periodic or sporadic task. Our tasks were instead
designed to create resource stress, with no useful work be-
tween resource accesses.

8 Conclusion
In this paper, we have considered real-time locking proto-
cols for replicated resources where individual tasks may ac-
quire multiple replicas. We distinguished between two vari-
ants of the considered problem, namely, replica assignment
and replica allocation, and gave algorithms for solving each
variant. In the case of allocation, we explored some of the
tradeoffs that exist between protocol-related overheads and
blocking times, and presented algorithms that are optimized
with respect to one or the other. Finally, we intestigated

these tradeoffs experimentally.
There are numerous avenues for future work. First, our

experimental results pertain to observed runtime perfor-
mance. Such experiments need to be complemented by stud-
ies that assess schedulability differences. Second, our allo-
cation algorithms were motivated by two use cases, as de-
scribed in Sec. 1. We intend to investigate both use cases
more fully, as well as a third, which involves controlling
acccess to the indivual processing elements within a sin-
gle GPU (which can be considerable in number). Third, it
would be desirable to obtain an allocation algorithm that
both exhibits low overhead and avoids unnecessary block-
ing; however, this seems quite difficult to do. Finally, as
noted earlier in Sec. 2, all of our spin-based algorithms have
suspension-based counterparts. These counterparts warrant
full consideration, as they would likely be preferrable in
many settings (e.g., mediating lengthy GPU accesses).
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Appendix

A Intractability

In this section, we show the intractability of the problem of
computing a tight s-blocking bound for Alg. 2, 3, or 4. This
problem is NP-hard in the weak (or ordinary) sense if the
total number of replicas, k, is given as a constant; and is
NP-hard in the strong sense if the total number of replicas,
k, is given as an input of the problem.

A.1 A subproblem: k-exclusion

In this subsection, we introduce the problem of comput-
ing a tight s-blocking bound for the k-exclusion protocol
(TBBKE), which is a subproblem of computing a tight s-
blocking bound for the algorithms in this paper, whereDi =
1 for each i. Under the k-exclusion protocol, no “cutting-
ahead mechanism”, as in Sec. ??, will ever be activated.
Therefore, the k-exclusion protocol is a general subcase, no
matter which of Alg. 2, 3, or 4 is used. Thus, any hardness
of computing s-blocking times for the k-exclusion protocol
implies at least the same hardness for Alg. 2, 3, or 4.

Def. 3. (TBBKE) There are n requests that are pending.
These may have been issued in any order, but all are issued
right before a particular request of interest, Rn+1. These
n+ 1 requests compete for k replicas (k ≥ 2) of resources
and each request needs exactly one replica to be satisfied
and will hold the replica for Li time units of execution.
The resource accesses are managed by Alg. 2, 3, or 4 with
Di = 1 for each i. The problem is to determine whether the
worst-case s-blocking time of Rn+1 is at least c.

A.2 Hardness for TBBKE

In this subsection, we show that the TBBKE problem is NP-
hard in the weak sense for constant k and is NP-hard in the
strong sense for non-constant k.

A.2.1 Constant k

In this case, we give a polynomial-time many-one reduction
from the NP-complete problem PARTITION to TBBKE.

Def. 4. (PARTITION) Let S = {s1, s2, . . . , sn} be a multi-
set of positive integers. Can S be partitioned into two non-
overlapping subsets S1 and S2, such that∑

si∈S1

si =
∑
si∈S2

si?

Theorem 4. TBBKE is NP-hard for constant k.

Proof. Given a PARTITION instance S = {s1, s2, . . . , sn},
create n + (k − 2) prior requests, a request of interest

Rn+(k−2)+1, and c such that

Li = si, for 1 ≤ i ≤ n,
Li = c, for n+ 1 ≤ i ≤ n+ (k − 2),
Li = 1, for i = n+ (k − 2) + 1,

c =
1

2

∑
si∈S

si.

See Figure 6 for an illustration.
S can be partitioned =⇒ the s-blocking time of
Rn+(k−2)+1 can be at least c. If S can be partitioned into
S1 and S2, then there exists an issuing order with which re-
quests corresponding to S1 are satisfied by a single replica
in sequence, requests corresponding to S2 are satisfied by
another single replica in sequence, and each of the requests
Rn+1, . . . , Rn+(k−2) is satisfied by an exclusive replica (for
k > 2). Then, all replicas are fully occupied during time in-
terval [0, c]. That is, Rn+(k−2)+1 experiences an s-blocking
time of c.
The s-blocking time of Rn+(k−2)+1 can be at least c
=⇒ S can be partitioned. If the s-blocking time of
Rn+(k−2)+1 is at least c, then all replicas are fully occu-
pied during time interval [0, c]. Given that

∑n+(k−2)
i=1 si =

kc, all of the requests R1, . . . , Rn+(k−2) must execute
within the time interval [0, c], i.e., the s-blocking time of
Rn+(k−2)+1 is exactly c. Therefore, each of the requests
Rn+1, . . . , Rn+(k−2) executes with an exclusive replica
(for k > 2), and requests R1, . . . , Rn fully occupy the re-
maining two replicas during the time interval [0, c]. That
is, let S1 include all si corresponding to the requests that
are satisfied by a single replica, and S2 includes all si cor-
responding to the requests that are satisfied by the other
replica, then S1 and S2 are a partition of S.

Thus, TBBKE is NP-hard, since PARTITION is NP-hard.

...

c =
∑

si∈S si/2

k

Figure 6: The s-blocking time ofRn+(k−2)+1 can be at least
c if and only if S can be partitioned into subsets S1 and S2

of equal sum.

A.2.2 Non-Constant k

In this case, we give a reduction from the strongly NP-
complete problem 3-PARTITION to TBBKE.
Def. 5. (3-PARTITION) Let S = {s1, s2, . . . , s3m} be a
multiset of positive integers, where B = (

∑3m
i=1 si)/m and

B/4 < si < B/2. Can S be partitioned into m triplets
S1, S2, . . . , Sm, such that

∑
si∈Sj

= B for each j?



Theorem 5. TBBKE is NP-hard in the strong sense if k is
not a constant but an input of TBBKE.
Proof. Given a 3-PARTITION instance S =
{s1, s2, . . . , s3m}, create 3m prior requests, a request
of interest R3m+1, and k, c such that

Li = si, for 1 ≤ i ≤ 3m,
Li = 1, for i = 3m+ 1,
k = m,

c = B.

See Figure 7 for an illustration.
S can be 3-partitioned =⇒ the s-blocking time of
R3m+1 can be at least c. If S can be 3-partitioned, then
there exists an issuing order with which each triplet of re-
quests corresponding to Sj are satisfied by a single replica
in sequence for each 1 ≤ j ≤ m. Then, all replicas are fully
occupied during time interval [0, c]. That is, R3m+1 experi-
ences an s-blocking time of c.
The s-blocking time of R3m+1 can be at least c =⇒ S
can be 3-partitioned. If the s-blocking time of R3m+1 is
at least c, then all replicas are fully occupied during time
interval [0, c]. Given that

∑3m
i=1 si = mB = kc, all of the

requestsR1, · · · , R3m must execute within the time interval
[0, c], i.e., the s-blocking time of R3m+1 is exactly c . Also,
given that B/4 < si < B/2, each replica must be occupied
by exactly three requests during the time interval [0, c]. That
is, let each triplet Sj include the three si corresponding to
the three requests that are satisfied by a single replica, then
S1, . . . , Sk are a 3-partition of S (note that k = m).

The parameters in the created TBBKE instance have val-
ues that are bounded by some polynomial in the size and
maximum parameter value of the 3-PARTITION instance.
Thus, TBBKE is strongly NP-hard, since 3-PARTITION is
strongly NP-hard.

c = B

k = m

Figure 7: The s-blocking time of R3m+1 can be at least c if
and only if S can be partitioned into triplets of size B.

B Additional Graphs
These graphs are organized in groups of six. Each group of
six shows the results of a single experiment and is contained
on a single page. Both the average and the 99th percentile
of blocking, ALLOCATE overhead, and UNALLOCATE over-
head are displayed against whichever factor was varied. To
gather these, we recorded the number of cycles from before
the relevant line(s) of code to after the relevant line(s) and
converted that number to time based on the clock speed.

Since Algs. 3, 4, and 5 execute the important code of Al-
locate and Unallocate under a queue lock which ensures
mutual exclusion, causing a high contention scenario in
which cutting ahead would be highly beneficial was simple;
an additional shared variable was added which indicated
how many replicas the previous request had required. This
allowed us to change the number required by the current re-
quest to ensure an alternating number of replicas requested.
To do the same for Alg. 2, we had to add a queue lock to
ensure the proper ordering. We ignored the time those ex-
tra instructions took in our measurements, though the added
time required to execute Allocate and Unallocate could have
caused a slight increase in the blocking times measured.

From the experiments, we observe the following trends.

• The overheads and blocking of Alg. 2 and Alg. 3 are
comparable in about 95% of our results.

• As expected, increasing slot size decreases overheads
but increases blocking time for Alg. 4. Therefore, for a
certain application, an appropriate selection of slot size
is necessary.

• The overheads of Alg. 4 and Alg. 5 are consistently
higher than those of Alg. 2 or Alg. 3.

• As we vary the number of cores in use, we see a jump
in overheads as we move from using one socket to
using two sockets due to increased memory latencies
across sockets. Alg. 4 has more shared data, and thus
the overheads a request experiences increase more sig-
nificantly if Alg. 4 is in use than if Alg. 2 or Alg. 3 is
in use.



Figure 8: Average overhead for ALLOCATE call as a function of
slot size for m = 36, k = 10, cs ratio = 1, Li chosen randomly
from [100, 1000]µs, and Di chosen randomly from [2,8].

Figure 9: Average blocking within ALLOCATE call as a function
of slot size for m = 36, k = 10, cs ratio = 1, Li chosen ran-
domly from [100, 1000]µs, and Di chosen randomly from [2,8].

Figure 10: Average overhead for UNALLOCATE call as a function
of slot size for m = 36, k = 10, cs ratio = 1, Li chosen ran-
domly from [100, 1000]µs, and Di chosen randomly from [2,8].

Figure 11: 99th percentile of overhead for ALLOCATE call as a
function of slot size for m = 36, k = 10, cs ratio = 1, Li cho-
sen randomly from [100, 1000]µs, and Di chosen randomly from
[2,8].

Figure 12: 99th percentile of blocking within ALLOCATE call as
a function of slot size for m = 36, k = 10, cs ratio = 1, Li

chosen randomly from [100, 1000]µs, and Di chosen randomly
from [2,8].

Figure 13: 99th percentile of overhead for UNALLOCATE call as
a function of slot size for m = 36, k = 10, cs ratio = 1, Li

chosen randomly from [100, 1000]µs, and Di chosen randomly
from [2,8].



Figure 14: Average overhead for ALLOCATE call as a function of
cs ratio for m = 18, k = 10, Li = 1ms, Di chosen randomly
from [1, 10], and slot size = 1ms.

Figure 15: Average blocking within ALLOCATE call as a function
of cs ratio for m = 18, k = 10, Li = 1ms, Di chosen randomly
from [1,10], and slot size = 1ms.

Figure 16: Average overhead for UNALLOCATE call as a function
of cs ratio for m = 18, k = 10, Li = 1ms, Di chosen randomly
from [1,10], and slot size = 1ms.

Figure 17: 99th percentile of overhead for ALLOCATE call as a
function of cs ratio for m = 18, k = 10, Li = 1ms, Di chosen
randomly from [1,10], and slot size = 1ms.

Figure 18: 99th percentile of blocking within ALLOCATE call as
a function of cs ratio for m = 18, k = 10, Li = 1ms, Di chosen
randomly from [1,10], and slot size = 1ms.

Figure 19: 99th percentile of overhead for UNALLOCATE call as
a function of cs ratio for m = 18, k = 10, Li = 1ms, Di chosen
randomly from [1,10], and slot size = 1ms.



Figure 20: Average overhead for ALLOCATE call as a function of
cs ratio for m = 18, k = 10, Li = 1ms, Di chosen randomly
from [1,5], and slot size = 1ms.

Figure 21: Average blocking within ALLOCATE call as a function
of cs ratio for m = 18, k = 10, Li = 1ms, Di chosen randomly
from [1,5], and slot size = 1ms.

Figure 22: Average overhead for UNALLOCATE call as a function
of cs ratio for m = 18, k = 10, Li = 1ms, Di chosen randomly
from [1,5], and slot size = 1ms.

Figure 23: 99th percentile of overhead for ALLOCATE call as a
function of cs ratio for m = 18, k = 10, Li = 1ms, Di chosen
randomly from [1,5], and slot size = 1ms.

Figure 24: 99th percentile of blocking within ALLOCATE call as
a function of cs ratio for m = 18, k = 10, Li = 1ms, Di chosen
randomly from [1,5], and slot size = 1ms.

Figure 25: 99th percentile of overhead for UNALLOCATE call as
a function of cs ratio for m = 18, k = 10, Li = 1ms, Di chosen
randomly from [1,5], and slot size = 1ms.



Figure 26: Average overhead for ALLOCATE call as a function
of cs ratio for m = 36, k = 10, Di = 10, Li = 100µs, and
slot size = 10µs.

Figure 27: Average blocking within ALLOCATE call as a function
of cs ratio for m = 36, k = 10, Di = 10, Li = 100µs, and
slot size = 10µs.

Figure 28: Average overhead for UNALLOCATE call as a function
of cs ratio for m = 36, k = 10, Di = 10, Li = 100µs, and
slot size = 10µs.

Figure 29: 99th percentile of overhead for ALLOCATE call as a
function of cs ratio for m = 36, k = 10, Di = 10, Li = 100µs,
and slot size = 10µs.

Figure 30: 99th percentile of blocking within ALLOCATE call as a
function of cs ratio for m = 36, k = 10, Di = 10, Li = 100µs,
and slot size = 10µs.

Figure 31: 99th percentile of overhead for UNALLOCATE call as a
function of cs ratio for m = 36, k = 10, Di = 10, Li = 100µs,
and slot size = 10µs.



Figure 32: Average overhead for ALLOCATE call as a function of
the maximum number of replicas required for m = 18, k = 10,
Di chosen randomly in the range of 1 to the maximum number
given, Li = 100µs, cs ratio = 1 and slot size = 100µs.

Figure 33: Average blocking within ALLOCATE call as a function
of the maximum number of replicas required form = 18, k = 10,
Di chosen randomly in the range of 1 to the maximum number
given, Li = 100µs, cs ratio = 1 and slot size = 100µs.

Figure 34: Average overhead for UNALLOCATE call as a function
of the maximum number of replicas required form = 18, k = 10,
Di chosen randomly in the range of 1 to the maximum number
given, Li = 100µs, cs ratio = 1 and slot size = 100µs.

Figure 35: 99th percentile of overhead for ALLOCATE call as a
function of the maximum number of replicas required form = 18,
k = 10, Di chosen randomly in the range of 1 to the maximum
number given, Li = 100µs, cs ratio = 1 and slot size = 100µs.

Figure 36: 99th percentile of blocking within ALLOCATE call as a
function of the maximum number of replicas required form = 18,
k = 10, Di chosen randomly in the range of 1 to the maximum
number given, Li = 100µs, cs ratio = 1 and slot size = 100µs.

Figure 37: 99th percentile of overhead for UNALLOCATE call as a
function of the maximum number of replicas required form = 18,
k = 10, Di chosen randomly in the range of 1 to the maximum
number given, Li = 100µs, cs ratio = 1 and slot size = 100µs.



Figure 38: Average overhead for ALLOCATE call as a function of
Li for m = 36, k = 10, Di = 5, Li in a range of 100µs with the
low point of the range stated, cs ratio = 1 and slot size = 10µs.

Figure 39: Average blocking within ALLOCATE call as a function
of Li for m = 36, k = 10, Di = 5, Li in a range of 100µs with
the low point of the range stated, cs ratio = 1 and slot size =
10µs.

Figure 40: Average overhead for UNALLOCATE call as a function
of Li for m = 36, k = 10, Di = 5, Li in a range of 100µs with
the low point of the range stated, cs ratio = 1 and slot size =
10µs.

Figure 41: 99th percentile of overhead for ALLOCATE call as a
function of Li for m = 36, k = 10, Di = 5, Li in a range of
100µs with the low point of the range stated, cs ratio = 1 and
slot size = 10µs.

Figure 42: 99th percentile of blocking within ALLOCATE call as
a function of Li for m = 36, k = 10, Di = 5, Li in a range
of 100µs with the low point of the range stated, cs ratio = 1 and
slot size = 10µs.

Figure 43: 99th percentile of overhead for UNALLOCATE call as
a function of Li for m = 36, k = 10, Di = 5, Li in a range
of 100µs with the low point of the range stated, cs ratio = 1 and
slot size = 10µs.



Figure 44: Average overhead for ALLOCATE call as a function of
Li form = 36, k = 10,Di = 10, Li in a range of 100µswith the
low point of the range stated, cs ratio = 1 and slot size = 10µs.

Figure 45: Average blocking within ALLOCATE call as a function
of Li for m = 36, k = 10, Di = 10, Li in a range of 100µs with
the low point of the range stated, cs ratio = 1 and slot size =
10µs.

Figure 46: Average overhead for UNALLOCATE call as a function
of Li for m = 36, k = 10, Di = 10, Li in a range of 100µs with
the low point of the range stated, cs ratio = 1 and slot size =
10µs.

Figure 47: 99th percentile of overhead for ALLOCATE call as a
function of Li for m = 36, k = 10, Di = 10, Li in a range of
100µs with the low point of the range stated, cs ratio = 1 and
slot size = 10µs.

Figure 48: 99th percentile of blocking within ALLOCATE call as
a function of Li for m = 36, k = 10, Di = 10, Li in a range
of 100µs with the low point of the range stated, cs ratio = 1 and
slot size = 10µs.

Figure 49: 99th percentile of overhead for UNALLOCATE call as
a function of Li for m = 36, k = 10, Di = 10, Li in a range
of 100µs with the low point of the range stated, cs ratio = 1 and
slot size = 10µs.



Figure 50: Average overhead for ALLOCATE call as a function of
Li for m = 36, k = 10, Di chosen randomly from [1,10], Li in a
range of 10µs with the low point of the range stated, cs ratio = 1
and slot size = 1µs.

Figure 51: Average blocking within ALLOCATE call as a function
of Li form = 36, k = 10,Di chosen randomly from [1,10], Li in
a range of 10µswith the low point of the range stated, cs ratio = 1
and slot size = 1µs.

Figure 52: Average overhead for UNALLOCATE call as a function
of Li form = 36, k = 10,Di chosen randomly from [1,10], Li in
a range of 10µswith the low point of the range stated, cs ratio = 1
and slot size = 1µs.

Figure 53: 99th percentile of overhead for ALLOCATE call as a
function of Li for m = 36, k = 10, Di chosen randomly from
[1,10],Li in a range of 10µswith the low point of the range stated,
cs ratio = 1 and slot size = 1µs.

Figure 54: 99th percentile of blocking within ALLOCATE call as
a function of Li for m = 36, k = 10, Di chosen randomly from
[1,10],Li in a range of 10µswith the low point of the range stated,
cs ratio = 1 and slot size = 1µs.

Figure 55: 99th percentile of overhead for UNALLOCATE call as
a function of Li for m = 36, k = 10, Di chosen randomly from
[1,10],Li in a range of 10µswith the low point of the range stated,
cs ratio = 1 and slot size = 1µs.



Figure 56: Average overhead for ALLOCATE call as a function
of m for k = 10, Di = 10, Li = 100µs, cs ratio = 1 and
slot size = 10µs.

Figure 57: Average blocking within ALLOCATE call as a function
of m for k = 10, Di = 10, Li = 100µs, cs ratio = 1 and
slot size = 10µs.

Figure 58: Average overhead for UNALLOCATE call as a function
of m for k = 10, Di = 10, Li = 100µs, cs ratio = 1 and
slot size = 10µs.

Figure 59: 99th percentile of overhead for ALLOCATE call as a
function of m for k = 10, Di = 10, Li = 100µs, cs ratio = 1
and slot size = 10µs.

Figure 60: 99th percentile of blocking within ALLOCATE call as
a function of m for k = 10, Di = 10, Li = 100µs, cs ratio = 1
and slot size = 10µs.

Figure 61: 99th percentile of overhead for UNALLOCATE call as
a function of m for k = 10, Di = 10, Li = 100µs, cs ratio = 1
and slot size = 10µs.



Figure 62: Average overhead for ALLOCATE call as a function
of m for k = 10, Di chosen randomly from [1,5], Li = 100µs,
cs ratio = 1 and slot size = 10µs.

Figure 63: Average blocking within ALLOCATE call as a function
of m for k = 10, Di chosen randomly from [1,5], Li = 100µs,
cs ratio = 1 and slot size = 10µs.

Figure 64: Average overhead for UNALLOCATE call as a function
of m for k = 10, Di chosen randomly from [1,5], Li = 100µs,
cs ratio = 1 and slot size = 10µs.

Figure 65: 99th percentile of overhead for ALLOCATE call as a
function of m for k = 10, Di chosen randomly from [1,5], Li =
100µs, cs ratio = 1 and slot size = 10µs.

Figure 66: 99th percentile of blocking within ALLOCATE call as
a function ofm for k = 10,Di chosen randomly from [1,5], Li =
100µs, cs ratio = 1 and slot size = 10µs.

Figure 67: 99th percentile of overhead for UNALLOCATE call as a
function of m for k = 10, Di chosen randomly from [1,5], Li =
100µs, cs ratio = 1 and slot size = 10µs.



Figure 68: Average overhead for ALLOCATE call as a function of
m for k = 100, Di chosen randomly from [1,50], Li = 100µs,
cs ratio = 1 and slot size = 10µs.

Figure 69: Average blocking within ALLOCATE call as a function
ofm for k = 100,Di chosen randomly from [1,50], Li = 100µs,
cs ratio = 1 and slot size = 10µs.

Figure 70: Average overhead for UNALLOCATE call as a function
ofm for k = 100,Di chosen randomly from [1,50], Li = 100µs,
cs ratio = 1 and slot size = 10µs.

Figure 71: 99th percentile of overhead for ALLOCATE call as a
function of m for k = 100, Di chosen randomly from [1,50],
Li = 100µs, cs ratio = 1 and slot size = 10µs.

Figure 72: 99th percentile of blocking within ALLOCATE call as
a function of m for k = 100, Di chosen randomly from [1,50],
Li = 100µs, cs ratio = 1 and slot size = 10µs.

Figure 73: 99th percentile of overhead for UNALLOCATE call as
a function of m for k = 100, Di chosen randomly from [1,50],
Li = 100µs, cs ratio = 1 and slot size = 10µs.



Figure 74: Average overhead for ALLOCATE call as a function
of cs ratio for k = 100, Di chosen randomly from [1,10], Li =
10µs, m = 18, and slot size = 10µs.

Figure 75: Average blocking within ALLOCATE call as a function
of cs ratio for k = 100, Di chosen randomly from [1,10], Li =
10µs, m = 18, and slot size = 10µs.

Figure 76: Average overhead for UNALLOCATE call as a function
of cs ratio for k = 100, Di chosen randomly from [1,10], Li =
10µs, m = 18, and slot size = 10µs.

Figure 77: 99th percentile of overhead for ALLOCATE call as a
function of cs ratio for k = 100,Di chosen randomly from [1,10],
Li = 10µs, m = 18, and slot size = 10µs.

Figure 78: 99th percentile of blocking within ALLOCATE call as a
function of cs ratio for k = 100,Di chosen randomly from [1,10],
Li = 10µs, m = 18, and slot size = 10µs.

Figure 79: 99th percentile of overhead for UNALLOCATE call as a
function of cs ratio for k = 100,Di chosen randomly from [1,10],
Li = 10µs, m = 18, and slot size = 10µs.



Figure 80: Average overhead for ALLOCATE call as a function of
cs ratio for k = 50, Di chosen randomly from [1,10], Li chosen
randomly from [85,200]µs, m = 18, and slot size = 100µs.

Figure 81: Average blocking within ALLOCATE call as a function
of cs ratio for k = 50, Di chosen randomly from [1,10], Li cho-
sen randomly from [85,200]µs, m = 18, and slot size = 100µs.

Figure 82: Average overhead for UNALLOCATE call as a function
of cs ratio for k = 50, Di chosen randomly from [1,10], Li cho-
sen randomly from [85,200]µs, m = 18, and slot size = 100µs.

Figure 83: 99th percentile of overhead for ALLOCATE call as a
function of cs ratio for k = 50, Di chosen randomly from [1,10],
Li chosen randomly from [85,200]µs, m = 18, and slot size =
100µs.

Figure 84: 99th percentile of blocking within ALLOCATE call as a
function of cs ratio for k = 50, Di chosen randomly from [1,10],
Li chosen randomly from [85,200]µs, m = 18, and slot size =
100µs.

Figure 85: 99th percentile of overhead for UNALLOCATE call as a
function of cs ratio for k = 50, Di chosen randomly from [1,10],
Li chosen randomly from [85,200]µs, m = 18, and slot size =
100µs.



Figure 86: Average overhead for ALLOCATE call as a function
of cs ratio for k = 10, Di chosen to alternate between 2 and 9,
Li chosen randomly from [85,200]µs, m = 18, and slot size =
100µs.

Figure 87: Average blocking within ALLOCATE call as a function
of cs ratio for k = 10, Di chosen to alternate between 2 and 9,
Li chosen randomly from [85,200]µs, m = 18, and slot size =
100µs.

Figure 88: Average overhead for UNALLOCATE call as a function
of cs ratio for k = 10, Di chosen to alternate between 2 and 9,
Li chosen randomly from [85,200]µs, m = 18, and slot size =
100µs.

Figure 89: 99th percentile of overhead for ALLOCATE call as a
function of cs ratio for k = 10, Di chosen to alternate between
2 and 9, Li chosen randomly from [85,200]µs, m = 18, and
slot size = 100µs.

Figure 90: 99th percentile of blocking within ALLOCATE call as
a function of cs ratio for k = 10, Di chosen to alternate be-
tween 2 and 9, Li chosen randomly from [85,200]µs, m = 18,
and slot size = 100µs.

Figure 91: 99th percentile of overhead for UNALLOCATE call as
a function of cs ratio for k = 10, Di chosen to alternate be-
tween 2 and 9, Li chosen randomly from [85,200]µs, m = 18,
and slot size = 100µs.



Figure 92: Average overhead for ALLOCATE call as a function
of cs ratio for k = 10, Di chosen to alternate between 2 and 9,
Li chosen randomly from [85,200]µs, m = 36, and slot size =
100µs.

Figure 93: Average blocking within ALLOCATE call as a function
of cs ratio for k = 10, Di chosen to alternate between 2 and 9,
Li chosen randomly from [85,200]µs, m = 36, and slot size =
100µs.

Figure 94: Average overhead for UNALLOCATE call as a function
of cs ratio for k = 10, Di chosen to alternate between 2 and 9,
Li chosen randomly from [85,200]µs, m = 36, and slot size =
100µs.

Figure 95: 99th percentile of overhead for ALLOCATE call as a
function of cs ratio for k = 10, Di chosen to alternate between
2 and 9, Li chosen randomly from [85,200]µs, m = 36, and
slot size = 100µs.

Figure 96: 99th percentile of blocking within ALLOCATE call as
a function of cs ratio for k = 10, Di chosen to alternate be-
tween 2 and 9, Li chosen randomly from [85,200]µs, m = 36,
and slot size = 100µs.

Figure 97: 99th percentile of overhead for UNALLOCATE call as
a function of cs ratio for k = 10, Di chosen to alternate be-
tween 2 and 9, Li chosen randomly from [85,200]µs, m = 36,
and slot size = 100µs.



Figure 98: Average overhead for ALLOCATE call as a function
of cs ratio for k = 10, Di chosen to alternate between 2 and 9,
Li = 100µs, m = 36, and slot size = 10µs.

Figure 99: Average blocking within ALLOCATE call as a function
of cs ratio for k = 10, Di chosen to alternate between 2 and 9,
Li = 100µs, m = 36, and slot size = 10µs.

Figure 100: Average overhead for UNALLOCATE call as a func-
tion of cs ratio for k = 10, Di chosen to alternate between 2 and
9, Li = 100µs, m = 36, and slot size = 10µs.

Figure 101: 99th percentile of overhead for ALLOCATE call as a
function of cs ratio for k = 10, Di chosen to alternate between 2
and 9, Li = 100µs, m = 36, and slot size = 10µs.

Figure 102: 99th percentile of blocking within ALLOCATE call as
a function of cs ratio for k = 10, Di chosen to alternate between
2 and 9, Li = 100µs, m = 36, and slot size = 10µs.

Figure 103: 99th percentile of overhead for UNALLOCATE call as
a function of cs ratio for k = 10, Di chosen to alternate between
2 and 9, Li = 100µs, m = 36, and slot size = 10µs.


