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Abstract
A variant of the conventional sporadic task model is con-
sidered wherein successive invocations of the same task do
not have to execute in precedence order. This model is mo-
tivated by stream-processing applications where successive
data items can be processed independently. The considered
hardware platform is assumed to be a heterogeneous mul-
tiprocessor with processors of different speeds. Such plat-
forms can be utilized in embedded applications to enable
performance guarantees to be made with acceptable en-
ergy costs. The main contribution of this paper is to show
that preemptive and non-preemptive variants of the global
earliest-deadline-first scheduler are optimal with respect to
ensuring bounded response times under the considered task
model and hardware platform. An experimental evaluation
of both variants is presented as well.

1 Introduction
The computing industry recently experienced a major shift
in CPU architectures with the advent of multicore chips.
This shift has necessitated the adoption of new program-
ming models, algorithms, and analysis methods to fully
exploit the parallelism inherent in multicore chip designs.
While advances in these areas are well underway, indus-
try has already begun yet another architectural shift towards
heterogeneity in order to achieve greater levels of perfor-
mance and energy efficiency. Heterogeneity creates new
challenges because the availability of different types of pro-
cessing resources means that “choices” must be made when
allocating hardware resources to software components. The
need to resolve such choices can add considerable complex-
ity to resource allocation.

An example platform that epitomizes the above-
mentioned shift is recently proposed multicore technology
by ARM called big.LITTLE [1], which integrates relatively
slower, low-power processors with faster, high-power ones
to balance performance and energy efficiency. This hetero-
geneous computing architecture is being used by Samsung
in their new mobile SoC, Exynos 5422, which consists of
four slower ARM Cortex-A7 cores and four faster ARM
Cortex-A15 cores [2]. Using a big.LITTLE platform, en-
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ergy can be saved under low-load situations by utilizing
only slower cores, while still accommodating high-load sit-
uations, when necessary, by utilizing faster cores.

A big.LITTLE platform is an example of a uniform het-
erogeneous multiprocessor, wherein processors (conceptu-
ally) differ only with respect to processing speed. In this pa-
per, we consider the real-time scheduling of data-processing
streams on such a multiprocessor (hereafter, all references
to “heterogeneous” should be taken to mean “uniform het-
erogeneous”). Specifically, we consider workloads in which
each stream is processed by a single sporadic task, the data
items processed in one step are handled by invoking the
corresponding task once, and consecutive invocations, or
jobs, of the same task have no precedence requirements
and may execute in parallel if one such job is still unfin-
ished when a later such job is released. (As explained later
in Sec. 6, this model can be generalized so that multiple
processing steps are handled by a sequence of tasks in a
pipelined fashion.) We call the resulting task model the npc-
sporadic task model (for “no precedence constraints”). As
illustrated in Fig. 1, the npc-sporadic task model is different
from the conventional sporadic model, which requires suc-
cessive jobs of the same task to execute in sequence. In fact,
as seen later, under the npc-sporadic model, an individual
task may overutilize any single processor; this is not fea-
sible under the conventional model if response times must
be bounded. Our specific contribution lies in showing how
to optimally schedule npc-sporadic task systems (even with
pipelining) on a heterogeneous multiprocessor, where the
real-time constraint of interest is that job response times are
(analytically) upper-bounded. Before continuing, we exam-
ine two example use-case scenarios in which the elimination
of intra-task precedence constraints is useful.

Example 1: Obstacle detection in automotive systems.
Detecting and tracking objects (potential obstacles) is a fun-
damental part of automotive computer vision. While the
computations for frame-to-frame tracking require the output
of detectors to have been completed, the actual per-frame
detectors may be run independently as long as their results
are available in time to be used in frame-to-frame tracking
computations. In some use cases (e.g., detecting pedestri-
ans in the road instead of tracking them), frame-to-frame
computations may not even be required. In an automotive
system, desired response times might be specified, for ex-
ample, to reflect the reaction time of an alert driver, which
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Figure 1: Example showing the differences between conventional
sporadic tasks and npc-sporadic tasks. τ1 is either a conventional
sporadic task (Fig. 1(b)) or an npc-sporadic task (Fig. 1(c)) with
a minimum job-release separation of 2 time units, and each job
τ1,j needing 4 time units to complete its execution. We consider
scheduling τ1 on two identical CPUs.

is around 700 ms [13]. In the automotive industry, heteroge-
neous platforms are often used for energy and cost reasons.

Example 2: Video coding. Video decoding can be real-
ized by defining a task that is invoked each time a frame of
video is processed. Dependencies among frames are com-
mon, so such a task is often modeled as a conventional spo-
radic task with intra-task precedence constraints. However,
I-frames, or instantaneous decoder refresh (IDR) frames,
are not subject to such dependencies. Based on this obser-
vation, Ahmed et al. [3] showed that greater parallelism in
video decoding can be achieved by defining tasks on a group
of pictures (GOP) basis instead of a per-frame basis, where
each GOP starts with an I-frame and contains all of the ref-
erence frames needed to process the entire GOP. Each task
invocation processes an entire GOP, and as long as the re-
sponse time of each such invocation is bounded, bounded
buffers can be employed to display decoded frames in the
proper sequence. Note that requiring each GOP to start with
an I-frame eliminates intra-task dependencies. Such depen-
dencies can be eliminated in video encoding as well [17].

Related work. Having motivated the usefulness of some-
times eliminating intra-task dependencies, we briefly review
prior related work, before describing our major contribu-
tions more carefully. In our work, we assume that tasks are
scheduled by a global multiprocessor scheduler that sched-
ules tasks from a single run queue. In work on scheduling
conventional sporadic task systems on homogeneous multi-
processors, a variety of global algorithms have been shown

to be optimal with respect to ensuring per-task response
time bounds (i.e., such bounds can be ensured whenever
possible) [5, 6, 7, 9, 15]. In all of this work, response-time
bounds are actually derived by bounding deadline tardiness
(or, the extent to which deadlines can be missed). Under
the “bounded tardiness” definition of soft real-time (SRT)
correctness [5], these algorithms are therefore SRT-optimal.
Several of the just-cited papers focus on a particular global
scheduler, global earliest-deadline-first (GEDF), which pri-
otitizes jobs in earliest-deadline-first (EDF) order. GEDF-
based algorithms are our focus as well. In other work on
homogeneous multiprocessors, Erickson et al. [8] showed
that GEDF retains the property of being SRT-optimal for
npc-sporadic task systems. In this paper, we extend this re-
sult to heterogeneous multiprocessors.

It follows from work of Funk et al. [11] that the feasi-
bility condition for ensuring response-time bounds for spo-
radic tasks in the heterogeneous case differs from the homo-
geneous case. Technically, Funk presented a condition for
avoiding deadline misses in hard real-time (HRT) task sys-
tems, but such a condition implies that response times are
bounded as well. Subsequently, a number of authors pre-
sented algorithms and analysis pertaining to HRT heteroge-
neous systems (we omit citations due to space constraints).
To the best of our knowledge, the Level Algorithm [14] is
the only prior algorithm for heterogeneous systems known
to be optimal in any sense, but it is impractical to implement
because it preempts and migrates tasks excessively.

Contributions. We consider the scheduling of npc-
sporadic task systems on a heterogeneous multiprocessor
under two GEDF-based algorithms, which we call F-P-
GEDF (full-migration preemptive GEDF) and N-P-GEDF
(non-preemptive GEDF), respectively. We show that both
of these algorithms guarantee bounded job response times
for any feasible npc-sporadic task system. Interestingly, the
feasibility condition we establish for npc-sporadic tasks dif-
fers from that established by Funk for sporadic tasks. Of the
two algorithms we consider, F-P-GEDF is more greedy in
executing jobs on faster processors, and therefore ensures
a better response-time bound; in contrast, N-P-GEDF only
ensures a looser response-time bound, but does not migrate
jobs away from slower processors when faster processors
becomes available; this characteristic could lead to energy
savings.

To the best of our knowledge, this is the first paper to
consider the scheduling of npc-sporadic task systems on
heterogeneous multiprocessors, the first to establish a fea-
sibility condition for ensuring SRT-optimality (i.e., guar-
anteed bounded response times), and the first to present
scheduling algorithms that are SRT-optimal.

Organization. In the rest of the paper, we describe the con-
sidered platforms and task systems more carefully (Sec. 2),
present proof-specific preliminaries (Sec. 3), present our
response-time-bound proofs (Secs. 4 and 5), further elab-
orate on stream-processing use cases (Sec. 6), present an
experimental evaluation (Sec. 7), and conclude (Sec. 8).



2 Model
We consider uniform heterogeneous multiprocessors, as de-
fined in [12]. m is the number of processors. Processor i,
where 1 ≤ i ≤ m, has an associated speed denoted by a
real number si, which represents the amount of work that
can be done on this processor within one time unit. We
also identify each processor by its speed and assume the
processors are decreasingly ordered by their speeds, i.e.,
we denote a uniform heterogeneous multiprocessor by π =
{s1, s2, . . . , sm} where si ≥ si+1 for i = 1, 2, . . . ,m − 1.
The cumulative speed of the i fastest processors is Si =∑i
k=1 sk. Also, we assume time is continuous.
A task is a sequential piece of code and a job is an in-

stance (or an invocation) of a task. We let τ = {τ1, τ2,
. . . , τn} denote the task set to be scheduled. In the widely
studied sporadic task model, each task τi is characterized
by (Ci, Ti, Di), where Ci is τi’s worst-case execution time
(WCET)1 on a unit-speed processor, Ti is its period (the
minimum separation of any two jobs), and Di is its relative
deadline. τi,j is the jth job of τi. The release time of τi,j is
ri,j and its absolute deadline is di,j , where di,j = ri,j +Di.

On a uniform heterogeneous multiprocessor, Ci, called
the worst-case execution requirement of τi, is defined rela-
tive to a processor of speed 1.0. Thus, the WCET of τi when
entirely executing on processor sp is Ci

sp
(1 ≤ p ≤ m). We

let Cmax = max {1 ≤ i ≤ n | Ci}. Note that, in the hetero-
geneous case, the execution requirement of a job may differ
from its execution time. In prior work on identical multi-
processors, the two are the same, since speeds are usually
normalized to 1.0. The utilization of a task τi is ui = Ci

Ti
.

The total utilization of τ is Uτ =
∑n
i=1 ui. We also use τ to

refer to the set of all jobs generated by tasks in τ .
Like in [8], we consider npc-sporadic tasks, which have

no intra-task precedence constraints. The main difference
between the conventional sporadic task model and the npc-
sporadic task model is that the former requires successive
jobs of each task to execute in sequence while the latter
allows them to execute in parallel. That is, in the conven-
tional sporadic task model, job τi,j+1 cannot commence ex-
ecution until its predecessor τi,j completes, even if ri,j+1,
the release time of τi,j+1, has elapsed; in contrast, in npc-
sporadic task model, any job can execute as soon as it is
released. Additionally, in the npc-sporadic model, a task is
allowed to have a utilization greater than the fastest proces-
sor’s speed. Note that, although we allow intra-task paral-
lelism, each individual job still must execute sequentially.

Feasibility conditions. In [11], a feasibility condition for
conventional HRT implicit-deadline (i.e.,Di = Ti) periodic
task systems on uniform heterogeneous multiprocessors is
derived. Let Ui denote the sum of the largest i utilizations in
τ and assume the number of tasks n is at least the number of
processorsm. Then, an implicit-deadline periodic task set τ

1Techniques from [16] can be applied to instead provision tasks on an
average-case basis; we do not consider such techniques further due to space
constraints.

is feasible on a uniform heterogeneous multiprocessor π if
and only if

Ui ≤ Si, for i = 1, 2, · · · ,m− 1, (1)

and
Uτ ≤ Sm. (2)

The proof in [11] actually shows this is also a neces-
sary and sufficient feasibility condition for conventional
implicit-deadline sporadic task systems in both HRT and
SRT senses. The former requires all deadlines to be met
while the latter only requires response times to be bounded.

In npc-sporadic task model, where intra-task precedence
constraints are eliminated, it is clear that (1) and (2) are
also a necessary and sufficient feasibility condition for HRT
implicit-deadline task systems, since in such systems, ev-
ery job has to complete before its successor is released and
hence there is no difference between conventional sporadic
task systems and npc-sporadic ones. However, for SRT sys-
tems, (1) is not required, as we will show that response-
time bounds do not rely on (1). Furthermore, for arbitrary-
deadline tasks, our analysis applies as well. On the other
hand, (2) is always required. A violation of (2) means the
system is overutilized, and therefore response times will in-
crease unboundedly. To summarize, an npc-sporadic task
system τ is feasible, or guarantees bounded response times,
on π if and only if (2) holds.

3 Preliminaries
Def. 1. At a time instant t, a job τi,j is unreleased if t <
ri,j , pending if t ≥ ri,j and τi,j has not completed execution
by t, and complete if τi,j has completed by t.
Def. 2. We let A(R, τi,j , t1, t2) denote the cumulative pro-
cessor capacity allocation to job τi,j in an arbitrary schedule
R (for “real”) within the time interval [t1, t2].

Also, we let A(R,J , t1, t2) denote the cumulative pro-
cessor capacity allocation to the jobs in job set J in an ar-
bitrary scheduleR within the time interval [t1, t2], i.e.,

A(R,J , t1, t2) =
∑
τi,j∈J

A(R, τi,j , t1, t2). (3)

Ideal schedule. We let πIDEAL = {u1, u2, . . . , un} denote an
ideal multiprocessor for the task set τ , where πIDEAL consists
of n processors with speeds that exactly match the utiliza-
tions of the n tasks in τ , respectively. Let I be the parti-
tioned schedule for τ on πIDEAL, where each task τi in τ is
assigned to the processor of speed ui. Then, in I, every job
in τ commences execution at its release time and completes
execution within one period (it exactly executes for one pe-
riod if and only if its actual execution requirement matches
its worst-case execution requirement).

Thus, we have, A(I, τi,j , t1, t2) ≤ ui · (t2 − t1), and for
an arbitrary job set J ⊆ τ ,

A(I,J , t1, t2) ≤ Uτ · (t2 − t1). (4)



This is similar to the processor sharing (PS) schedule
considered in prior work [5]. However, the above notion of
an ideal schedule is preferable in the heterogeneous case,
because it prevents a single job from executing in parallel
with itself.

Note that, in the ideal schedule, a constrained-deadline
task τi (i.e., Di < Ti) may not complete execution at its
deadline. The following definition gives an upper bound on
the amount of work that completes later than its deadline in
the ideal schedule.

Def. 3. Let Li = ui · max{0, Ti − Di}, and let Lτ =∑n
i=1 Li. Then, in I, at any time instant t, the amount of

incomplete work with deadline at or before t is at most Lτ .

Def. 4. We denote the difference between the allocation to
a job τi,j in I and in a scheduleR within [0, t] as

lag(τi,j , t,R) = A(I, τi,j , 0, t)− A(R, τi,j , 0, t), (5)

and such an allocation difference for an arbitrary job set J
is

LAG(J , t,R) =
∑
τi,j∈J

lag(τi,j , t,R). (6)

By (5) and Def. 2, for any time interval [t1, t2] we have

lag(τi,j , t2,R) = lag(τi,j , t1,R)+

A(I, τi,j , t1, t2)− A(R, τi,j , t1, t2); (7)

and by (3), (6), and (7),

LAG(J , t2,R) = LAG(J , t1,R)+

A(I,J , t1, t2)− A(R,J , t1, t2). (8)

Lemma 1. If a job τi,j is unreleased or complete at t,
then lag(τi,j , t,R) ≤ 0; if τi,j is pending at t, then
lag(τi,j , t,R) ≤ Ci.
Proof. Follows immediately from Defs. 1 and 4.

Job of interest. To derive response-time bounds, we con-
sider an arbitrary job τk,l in τ , and upper bound its response
time. Let td be the absolute deadline of τk,l, i.e., td = dk,l.

Def. 5. In the rest of this paper, we let Ψ be the job set
consisting of all jobs with deadlines at or before td. The
jobs in Ψ are called competing jobs for τk,l. At time instant
t, the total incomplete work due to all jobs in Ψ is called
competing work at t.

Def. 6. If at a time instant t, all of the m processors are
executing jobs in Ψ, then t is a busy instant for Ψ; otherwise
t is a non-busy instant for Ψ. If in the time interval [t1, t2]
every time instant is a busy instant for Ψ, then [t1, t2] is a
busy interval for Ψ.

Lemma 2. If in R, [t1, t2] is a busy interval for Ψ, then
LAG(Ψ, t1,R) ≥ LAG(Ψ, t2,R).

Proof. Follows from the previous definitions.

Def. 7. For any time instant t, we let t+ denote the time

instant (t+ ε) and we let t− denote the time instant (t− ε),
where ε→ 0+.

4 Response-Time Bounds under F-P-GEDF
The F-P-GEDF scheduler works as follows.

• At any time instant, if there are at mostm pending jobs,
then all of them are scheduled; if there are more than
m pending jobs, then the m such jobs with the earli-
est deadlines are scheduled. Deadline ties are broken
arbitrarily.

• For any two jobs τi,j scheduled on processor sp and
τa,b scheduled on processor sq , where p < q, we have
di,j ≤ da,b (note that, given how we order processors,
sp ≥ sq).

In this section, we letR denote an F-P-GEDF schedule of τ
on π.

4.1 Basic Bounds

We first present a proof to derive basic response-time
bounds. This proof is more similar to the SRT analysis
framework for GEDF in [5], and therefore is easier to un-
derstand. We will improve the basic bounds proved here in
Sec. 4.2. Recall that τk,l is the analyzed job.

Lemma 3. At any non-busy instant t at or before td,
LAG(Ψ, t,R) ≤ (m− 1) · Cmax.

Proof. We decompose Ψ into three disjoint subsets: Ψ1, Ψ2,
and Ψ3 consisting of jobs that are unreleased, pending, and
complete, respectively. Since in the npc-sporadic task model
intra-task precedence constraints are removed, under F-P-
GEDF, there can be at most (m − 1) jobs in Ψ that are
pending at t, i.e., |Ψ2| ≤ m− 1. Thus,

LAG(Ψ,R, t)
= {by the definition of Ψ1, Ψ2, and Ψ3}
LAG(Ψ1, t,R) + LAG(Ψ2, t,R) + LAG(Ψ3, t,R)

= { by (6) }∑
τi,j∈Ψ1

lag(τi,j , t,R) +
∑

τi,j∈Ψ2

lag(τi,j , t,R)+

∑
τi,j∈Ψ3

lag(τi,j , t,R)

≤ { by Lemma 1 }∑
τi,j∈Ψ1

0 +
∑

τi,j∈Ψ2

Ci +
∑

τi,j∈Ψ3

0

≤ |Ψ2| · Cmax
≤ (m− 1) · Cmax.

Lemma 4. After td, once τk,l executes, it will continuously
execute until it completes.



Proof. After td, no job with deadline earlier than td can be
released, i.e., no job that can preempt τk,l can be released.
Thus, once τk,l executes, it will continually execute until it
completes, though it could migrate among processors.

Lemma 5. InR, the competing work for τk,l at td is at most
Lτ + (m− 1) · Cmax.
Proof. By Defs. 3 and 4, the competing work pending at td
in R is at most Lτ + LAG(Ψ,R, td). Let t′ be the latest
non-busy instant at or before td (or time 0 if no such non-
busy instant exists). Then, by Lemma 2, LAG(Ψ, t′,R) ≥
LAG(Ψ, td,R). Also, by Lemma 3, LAG(Ψ, t′,R) ≤ (m−
1) · Cmax. Thus, LAG(Ψ, td,R) ≤ (m − 1) · Cmax and
therefore the lemma follows.

Lemma 6. Let W be the competing work for τk,l at td.
Then the job of interest, τk,l, will complete execution no
later than time

td +
W − Ck
Sm

+
Ck
sm

.

Proof. Suppose that τk,l is not complete at or before td.
Let δ be the amount of work of τk,l that has been com-
pleted by td and ek,l be the real execution requirement of
τk,l. Then the remaining execution work of τk,l at td is
ek,l−δ. If τk,l does not execute within [td, td+

W−(ek,l−δ)
Sm

),

then [td, td +
W−(ek,l−δ)

Sm
) must be a busy interval for Ψ.

In this case, the competing work that is completed within
[td, td +

W−(ek,l−δ)
Sm

) is W − (ek,l − δ) (since within a
busy interval, all processors execute competing work and
the total speed is Sm), and the remaining competing work at
td+

W−(ek,l−δ)
Sm

is ek,l−δ, which must be totally due to τk,l.

Therefore, τk,l will execute at time td+
W−(ek,l−δ)

Sm
. Thus, if

τk,l is not complete at or before td, then the latest time when
τk,l commences execution after td is td +

W−(ek,l−δ)
Sm

. By
Lemma 4, τk,l will not be preempted once it executes af-
ter td. Also, since the minimum execution speed is sm, τk,l
will complete within ek,l−δ

sm
time units. Therefore, τk,l will

complete by

td +
W − (ek,l − δ)

Sm
+
ek,l − δ
sm

= {rearranging}

td +
W

Sm
− ek,l
Sm

+
ek,l
sm

+ (
δ

Sm
− δ

sm
)

≤ {since δ ≥ 0 and Sm ≥ sm}

td +
W

Sm
− ek,l
Sm

+
ek,l
sm

≤ {since ek,l ≤ Ck and Sm ≥ sm}

td +
W

Sm
− Ck
Sm

+
Ck
sm

= td +
W − Ck
Sm

+
Ck
sm

.

Theorem 1. The response time of an arbitrary job τk,l in τ
under F-P-GEDF scheduling on π is at most

Dk +
Lτ + (m− 1) · Cmax − Ck

Sm
+
Ck
sm

.

Proof. Follows from Lemmas 5 and 6.

4.2 Improved Bounds

We now show that the response-time bound above can be
improved in several ways.

First, we can derive a better bound on the LAG at td or
even an arbitrary time instant t by considering LAG non-
increasing intervals instead of busy intervals.
Def. 8. We introduce an integer Λ such that SΛ−1 < Uτ
and SΛ ≥ Uτ (1 ≤ Λ ≤ m). If at time instant t, at least
Λ processors are executing jobs in Ψ, then t is a LAG non-
increasing instant. If in the time interval [t1, t2] every time
instant is a LAG non-increasing instant, then [t1, t2] is a
LAG non-increasing interval for Ψ.

By the rules of F-P-GEDF, it is clear that at any time
instant, if p processors (1 ≤ p ≤ m) execute jobs in Ψ, then
they must be the p fastest ones. This property ensures that
LAG for Ψ cannot increase within a LAG non-increasing
interval. Then, we can derive following lemma.

Lemma 7. For any time instant t, LAG(Ψ, t,R) ≤ (Λ −
1) · Cmax.
Proof. This proof is similar to Lemma 5. We instead con-
sider the latest time instant that is not a LAG non-increasing
instant at or before t. The definition of LAG non-increasing
instant and the property in the prior paragraph ensure coun-
terparts for Lemmas 3 and 2, respectively. Thus, the lemma
follows.

Furthermore, in Sec. 4.1, we only considered the execu-
tion of τk,l after td, and we pessimistically assumed τk,l is
executed at the minimum speed sm. Actually, we can con-
sider the execution of τk,l as early as it is released, and
derive several linear constraints, and solve a corresponding
linear program. The following lemma shows this.
Def. 9. As defined in prior work [10, 11, 12], the identical-
ness of the multiprocessor platform π is

λ = max
1≤i≤m−1

{
si+1 + si+2 + · · ·+ sm

si

}
.

That is,

λ = max
1≤i≤m−1

{
Sm − Si

si

}
. (9)

Note that, λ ≤ m − 1. Also, λ = m − 1 if and only if π is
an identical multiprocessor.

Lemma 8. Suppose the competing work for τk,l at rk,l is
W . Then the response time of τk,l is upper bounded by

W

Sm
+

λ

Sm
Ck.



Proof. In the time interval between rk,l and τk,l’s comple-
tion, let x0 denote the cumulative time in which τk,l is not
executing, and let xi (1 ≤ i ≤ m) denote the cumulative
time in which τk,l is executing on processor si. Then, the
response time of τk,l is

∑m
i=0 xi.

Since we cannot execute τk,l for more than its worst-case
execution requirement, we have the linear constraint

m∑
i=1

sixi ≤ Ck.

By the rules of F-P-GEDF, after rk,l, when τk,l is not com-
plete and is not currently executing, all of the m processors
must execute jobs in Ψ; and when τk,l is executing on pro-
cessor si, the fastest i processors, i.e., s1 to si, must execute
jobs in Ψ. Since W is the competing work at rk,l, the exe-
cution of jobs in Ψ after rk,l cannot exceed W . Therefore,
we have the linear constraint

Smx0 +

m∑
i=1

Sixi ≤W.

We now manually solve this linear programming prob-
lem by the Simplex Algorithm [4], assuming that Ck,W, si,
and Si (1 ≤ i ≤ m) are constants and each xi (0 ≤ i ≤ m)
is a variable. To do so, we introduce two auxiliary variables,
xm+1 and xm+2, to rewrite this problem in slack form.
Specifically, we maximize

z =

m∑
i=0

xi,

subject to
xm+1 = Ck −

∑m
i=1 sixi,

xm+2 = W − Smx0 −
∑m
i=1 Sixi,

x0, x1, x2, · · · , xm+2 ≥ 0.

First, we pivot x0 with xm+2. Then, in the result-
ing program, we pivot xh, where h satisfies Sm−Sh

sh
=

max1≤i≤m {Sm−Si

si
} = λ, with xm+1. Due to space con-

straint, we omit the details here. The final program is to
maximize

z =
∑

1≤i≤m ∧ i 6=h

((
Sm − Si

si

)
−
(
Sm − Sh

sh

))
si
Sm

xi

−
(

1− Sh
Sm

)
xm+1

sh
− xm+2

Sm
+
W

Sm
+

(
1− Sh

Sm

)
Ck
sh
,

(10)

subject to
xh = Ck

sh
−
∑

1≤i≤m ∧ i6=h
si
sh
xi − xm+1

sh
,

x0 = W
Sm
−
∑

1≤i≤m ∧ i6=h
Si

Sm
xi − xm+2

Sm

− Sh

Sm
(Ck

sh
−
∑

1≤i≤m ∧ i 6=h
si
sh
xi − xm+1

sh
),

x0, x1, x2, · · · , xm+2 ≥ 0.

By the definition of h, all the coefficients of the x terms of
z in (10) are negative or zero. Therefore, when xh = Ck

sh
,

x0 = ( WSm
− Sh

Sm
· Ck

sh
), and xi = 0 (for all i 6= 0 and i 6= h),

z has its maximum value, which is

zmax =
W

Sm
+
Sm − Sh
Smsh

Ck

= {by (9) and by the definition of h}
W

Sm
+

λ

Sm
Ck.

Thus, the lemma follows.
We now upper bound the competing work for τk,l at rk,l

by the following lemma.

Lemma 9. The competing work for τk,l at rk,l is at most

Uτ ·Dk + Lτ + (Λ− 1) · Cmax.

Proof. By Defs. 3, 4, and 5, the competing work for τk,l at
rk,l is at most

Lτ + A(I,Ψ, 0, td)− A(R,Ψ, 0, rk,l)
= {by Def. 2}
Lτ + A(I,Ψ, 0, rk,l) + A(I,Ψ, rk,l, td)− A(R,Ψ, 0, rk,l)

= {by (5) and (6)}
A(I,Ψ, rk,l, td) + Lτ + LAG(Ψ, rk,l,R)

≤ {by (4)}
Uτ · (td − rk,l) + Lτ + LAG(Ψ, rk,l,R)

= {since td = dk,l = rk,l +Dk and by Lemma 7}
Uτ ·Dk + Lτ + (Λ− 1) · Cmax.

Theorem 2. The response time of an arbitrary job τk,l in τ
under F-P-GEDF scheduling on π is at most

Uτ
Sm
·Dk +

1

Sm
· Lτ +

(Λ− 1)

Sm
· Cmax +

λ

Sm
Ck.

Proof. Follows from Lemmas 8 and 9.

5 Response-Time Bounds under N-P-GEDF
The N-P-GEDF scheduler is similar to the F-P-GEDF
scheduler, except that once a job is selected for execution, it
runs to completion without preemption or migration. Also,
we do not require faster processors to be favored when
scheduling jobs; instead, we can always favor slower ones



for energy efficiency (if desired). In this section, we let R
be the N-P-GEDF schedule of τ on π.

Def. 10. Suppose time instant t is a non-busy time instant
for Ψ. If every pending job in Ψ is currently executing, then
t is a non-blocking non-busy instant for Ψ; otherwise (i.e.,
some pending job in Ψ is blocked by jobs that are not in Ψ),
t is a blocking non-busy instant for Ψ. If in a time interval
[t1, t2] every time instant is a blocking non-busy instant for
Ψ, then [t1, t2] is a blocking non-busy interval for Ψ.

Def. 11. The set of jobs that are not in Ψ but currently ex-
ecuting in schedule R at time instant t is denoted B(t) and
the incomplete work of jobs in B(t) is denoted B(t), called
blocking work.

It is clear that |B(t)| ≤ m for all t, and therefore B(t) ≤
m · Cmax for all t.

5.1 Basic Bounds

As before, we first derive basic response-time bounds. We
will improve the basic bounds in Sec. 5.2.

Lemma 10. At any non-blocking non-busy instant t,
LAG(Ψ,R, t) + B(t) ≤ m · Cmax.

Proof. Let b = |B(t)| (0 ≤ b ≤ m). Then B(t) ≤ b · Cmax,
and by the definition of a non-blocking non-busy instant,
the number of pending jobs in Ψ is at most m− b. Similarly
to Lemma 3, we have LAG(Ψ,R, t) ≤ (m − b) · Cmax.
Thus, LAG(Ψ,R, t) +B(t) ≤ (m− b) ·Cmax+ b ·Cmax =
m · Cmax.

Lemma 11. If [t1, t2] is a busy interval for Ψ in R, then
LAG(Ψ, t1,R) + B(t1) ≥ LAG(Ψ, t2,R) + B(t2).

Proof. Since t1, t2 ∈ [t1, t2] are busy instants for Ψ,
B(t1) = B(t2) = ∅ and therefore B(t1) = B(t2) = 0.
Also, by Lemma 2, LAG(Ψ, t1,R) ≥ LAG(Ψ, t2,R). Thus,
LAG(Ψ, t1,R) + B(t1) ≥ LAG(Ψ, t2,R) + B(t2).

Lemma 12. If [t1, t2] is a blocking non-busy interval for Ψ
inR, then any blocking job (i.e., any job that is not in Ψ but
executing at some time instant t in [t1, t2]), must execute
continuously in [t−1 , t].

Proof. Because [t1, t2] is a blocking non-busy interval for
Ψ, at any time instant within [t1, t2], there is at least one job
in Ψ that is pending but not executing. Also, since any job
in Ψ has an earlier deadline, or higher priority, than any job
not in Ψ, no job that is not in Ψ and not executing at t−1 can
execute in [t1, t2]. Thus, the lemma follows.

Lemma 13. If [t1, t2] is a blocking non-busy interval for Ψ
inR, then LAG(Ψ, t1,R)+B(t1) ≥ LAG(Ψ, t2,R)+B(t2).

Proof. Let [t, t′] be a subinterval in [t1, t2] such that |B(t)| =
|B(t′)|. By Lemma 12, the blocking jobs at every time in-
stant in [t, t′] are exactly the jobs in B(t). Let P denote the
set of processors on which those blocking jobs execute in

[t, t′]. Then,

B(t′) = B(t)−
∑
si∈P

si · (t′ − t).

Since [t, t′] ⊆ [t1, t2] is a blocking non-busy interval, the
processors not in P must execute jobs in Ψ; otherwise, it
would be a non-blocking non-busy interval. Therefore,

LAG(Ψ, t′,R)

= LAG(Ψ, t,R) + A(I,Ψ, t, t′)− A(R,Ψ, t, t′)

≤ LAG(Ψ, t,R) + Uτ · (t′ − t)−
∑
si /∈P

si · (t′ − t).

Thus,

LAG(Ψ, t′,R) + B(t′)

≤ LAG(Ψ, t,R) + Uτ · (t′ − t)−
∑
si /∈P

si · (t′ − t)+

B(t)−
∑
si∈P

si · (t′ − t)

= LAG(Ψ, t,R) + B(t) + Uτ · (t′ − t)−

(
∑
si /∈P

si +
∑
si∈P

si) · (t′ − t)

= LAG(Ψ, t,R) + B(t) + Uτ · (t′ − t)− Sm · (t′ − t)
≤ {since Uτ ≤ Sm }

LAG(Ψ, t,R) + B(t).

That is, for every such subinterval [t, t′] ⊆ [t1, t2], we have

LAG(Ψ, t,R) + B(t) ≥ LAG(Ψ, t′,R) + B(t′).

By induction, the lemma follows.

Lemma 14. In R, the competing work for τk,l plus the
blocking work at td is at most Lτ +m · Cmax.

Proof. Similarly to Lemma 5, the competing work pending
at td is at most Lτ + LAG(Ψ,R, td). Also, the blocking
work at td is B(td), so the competing work for τi,j plus the
blocking work at td is at most Lτ +LAG(Ψ,R, td)+B(td).

Let t′ be the latest non-blocking non-busy instant at or
before td (or time 0 if no such non-blocking non-busy in-
stant exists). Then by Lemma 10,

LAG(Ψ,R, t′) + B(t′) ≤ m · Cmax.

Moreover, by the definition of t′, [t′+, td] consists of
busy intervals and/or blocking non-busy intervals. There-
fore, by Lemmas 11 and 13,

LAG(Ψ,R, t′) + B(t′) ≥ LAG(Ψ,R, td) + B(td).

Thus, LAG(Ψ,R, td) + B(td) ≤ m · Cmax and the lemma
follows.

Lemma 15. Let W be the competing work plus the block-



ing work for τk,l at td. Then the job of interest, τk,l, will
complete execution no later than time

td +
W − Ck
Sm

+
Ck
sm

.

Proof. The proof of this lemma is exactly the same as
Lemma 6.

Theorem 3. The response time of an arbitrary job τk,l in τ
under N-P-GEDF scheduling on π is at most

Dk +
Lτ +m · Cmax − Ck

Sm
+
Ck
sm

.

Proof. Follows from Lemmas 14 and 15.

5.2 Improved Bounds

We now show that the response-time bound for N-P-GEDF
can also be improved. However, in contrast to the situation
in Sec. 4.2, we still have to pessimistically assume the job
of interest executes entirely at the minimum speed sm, since
in N-P-GEDF, a scheduled job cannot migrate among pro-
cessors. Nevertheless, we can still consider the execution of
τk,l before td.

The following three lemmas are similar to Lemmas 4, 14,
and 15.

Lemma 16. Under N-P-GEDF, once τk,l executes, it will
continuously execute until it completes.

Proof. Follows from the non-preemptive property.

Lemma 17. For any time instant t at or before td,
LAG(Ψ,R, t) + B(t) ≤ m · Cmax.

Proof. This proof is exactly the same as that for upper
bounding LAG(Ψ,R, td) + B(td) in Lemma 14.

Lemma 18. Let W be the competing work plus the block-
ing work for τk,l at rk,l. Then the job of interest, τk,l, will
complete execution no later than time

rk,l +
W − Ck
Sm

+
Ck
sm

.

Proof. By Lemma 16, this proof is exactly the same as
Lemma 15.

We now upper bound the competing work plus the block-
ing work for τk,l at rk,l by the following lemma.

Lemma 19. The competing work plus the blocking work
for τk,l at rk,l is at most

Uτ ·Dk + Lτ +m · Cmax.

Proof. By Defs. 3, 4, 5, and 11, the competing work plus the

blocking work for τk,l at rk,l is at most

Lτ + A(I,Ψ, 0, td)− A(R,Ψ, 0, rk,l) + B(rk,l)

= {by Def. 2}
Lτ + A(I,Ψ, 0, rk,l) + A(I,Ψ, rk,l, td)

− A(R,Ψ, 0, rk,l) + B(rk,l)

= {by (5) and (6)}
Lτ + LAG(Ψ,R, rk,l) + A(I,Ψ, rk,l, td) + B(rk,l)

≤ {by (4)}
Uτ · (td − rk,l) + Lτ + LAG(Ψ,R, rk,l) + B(rk,l)

≤ {since td = dk,l = rk,l +Dk and by Lemma 17}
Uτ ·Dk + Lτ +m · Cmax.

Theorem 4. The response time of an arbitrary job τk,l in τ
under N-P-GEDF scheduling on π is at most

Uτ
Sm
·Dk +

Lτ +m · Cmax − Ck
Sm

+
Ck
sm

.

Proof. Follows from Lemmas 18 and 19.

6 Relevance to Stream Processing Systems
By eliminating intra-task precedence constraints, we have
shown that both F-P-GEDF and N-P-GEDF can guarantee
bounded response times in processing data streams, when it
is possible to do so, provided successive task invocations are
independent. Note that, for those systems where the output
of processed data needs to be in order, we can use an ordered
buffer to store output. Furthermore, our derived response-
time bounds can be used to determine buffer sizes.

Our npc-sporadic task model can be generalized to opti-
mally support stream processing in a pipelined fashion. In
this case, we model each stage of the pipeline as an npc-
sporadic task; all such tasks have a common period that de-
pends on the stream. Within a stage, the processing due to
successive invocations must be independent, i.e., no prece-
dence constraints are required. Each stage usually does de-
pend on data output from the stage before it, but such a de-
pendency can be eliminated by increasing the phase of each
stage to match our derived response-time bounds. Fig. 2
shows this.

7 Evaluation
We evaluated the proposed algorithms and derived
response-time bounds by randomly generating task sets and
then calculating response-time bounds for each task on cer-
tain selected platforms.

In the case of homogeneous multiprocessors, the consid-
ered platform is implicitly determined by the number of pro-
cessors. However, for uniform heterogeneous multiproces-
sors, even if given the number of processors, there are an in-
finite number of speed combinations to consider. Therefore,
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Figure 2: Pipelining example, where T is the period of the data
stream.

there is no way to systematically choose platforms to eval-
uate by varying the number of processors. Thus, we chose
the following four multiprocessors as representatives of dif-
ferent heterogeneous multiprocessors in terms of both pro-
cessor number and speed combination: π1 = {2, 2, 2, 2, 1,
1, 1, 1}, π2 = {3, 3, 2, 2, 1, 1}, π3 = {3, 3, 1.5, 1.5, 1.5,
1.5}, and π4 = {4, 4, 2, 2}. We could also normalize the
slowest processor of the latter two platforms to be 1.0; how-
ever, we chose instead to scale all four platforms to have the
same total processor capacity to enable comparisons among
different platforms.

In our experiments, we assumed implicit deadlines for
simplicity, i.e., relative deadlines are equal to periods (Di =
Ti). For a given total utilization cap, we generated a task
set by first randomly selecting its task count uniformly over
[1, 20]. Note that we allow the number of tasks to be less
than the number of processors. Next, we randomly assigned
a relative utilization or weight, by uniformly generating a
number in (0, 1], for each task. We then scaled the relative
utilizations to obtain real utilizations by letting the total uti-
lization match the pre-set cap. Note that, by the scaling step,
we may generate tasks with a utilization greater than the
fastest processor’s speed; that is allowed in our task model
and analysis. Since all of the four considered platforms have
a total capacity of 12, we varied task-set utilization caps in
[0, 12] by increments of 0.2. For each given total utilization
cap, we generated 10,000 task sets. The period for each task
was selected uniformly within [10 ms, 100 ms]; its worst-
case execution requirement was then determined based on
its utilization and period.

Response-time bounds. We evaluated response-time
bounds in terms of both absolute values and relative
values. The former are directly computed by Theorems
2 and 4; the latter are defined by the ratio of a task’s
absolute response-time bound and its period. We focus
here on the maximum response-time bound for each task
set. Fig. 3(a) shows absolute response-time bound results
while Fig. 3(b) shows the relative response-time bound
results. Each data point in each figure is the average of the
maximum response-time bounds (absolute or relative) of
the 10,000 generated task sets for a given total utilization.
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Figure 3: Average maximum response-time bounds.

The resulting absolute and relative response-time bounds
are under 450 ms and 8 periods, respectively. Generally, the
lower the total utilization cap, the better the bounds; given
a total processor capacity, having fewer processors with
faster speeds yields better bounds.

Schedulability. Since in our analysis we do not have any
utilization constraints except for that the total task sys-
tem utilization is at most the total processor capacity, we
have shown that both F-P-GEDF and N-P-GEDF are SRT-
optimal, i.e., for any feasible system, either algorithm can
ensure a bounded response time for every job. However,
many systems require not only that response times are
bounded, but also that they do not exceed a certain thresh-
old. For this reason, we also evaluated F-P-GEDF and N-
P-GEDF with respect to response-time thresholds. Again,
we considered both absolute response times and relative re-
sponse times. For the former, we considered thresholds of
50 ms, 100 ms, 200 ms, and 400 ms; for the latter, we con-
sidered thresholds of 1, 2, 4, and 8. In all cases, we assessed
schedulability by determining the fraction of the randomly
generated task systems for which given response-time re-
quirement could be met. Due to space constraints, we only
show results for platform π1. Fig. 4(a) shows the schedula-
bility on π1 in terms of absolute-response-time thresholds
while Fig. 4(b) shows the schedulability on π1 in terms
of relative-response-time thresholds. When the threshold is
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Figure 4: Schedulability in terms of response-time thresholds.

400 ms (or 8 periods for relative response times), even in the
fully utilized case, the achieved schedulability was around
80%. Overall, the lower the total utilization, the better the
schedulability.

8 Conclusion
We have considered two GEDF-based schedulers, F-P-
GEDF and N-P-GEDF, on uniform heterogeneous multipro-
cessors in the absence of intra-task precedence constraints.
Both ensure bounded job response times for npc-sporadic
tasks as long as the underlying multiprocessor platform is
not overutilized. To the best of our knowledge, this is the
first paper to consider such tasks in the context of heteroge-
neous multiprocessor platforms.

It follows from our work that, on such platforms, dif-
ferent feasibility conditions apply for HRT and SRT npc-
sporadic systems (where “SRT” is interpreted to mean that,
although response times are bounded, deadlines can be
missed). This stands in contrast to the conventional sporadic
task model. For the npc-sporadic model, the HRT feasibil-
ity condition is the same as that for the conventional spo-
radic task model; however, the SRT feasibility condition for
the npc-sporadic model merely requires that the system is
not overutilized, in contrast to the more complicated condi-
tion for the sporadic case that requires (1). Note that both
F-P-GEDF and N-P-GEDF are SRT-optimal for scheduling

npc-sporadic task systems.
F-P-GEDF is more greedy in executing jobs on faster

processors and hence has a better response-time bound, at
the expense of potentially greater preemption and migra-
tion frequencies. On the other hand, N-P-GEDF does not
preempt or migrate jobs, but its guaranteed response-time
bounds are relatively higher. Our analysis for N-P-GEDF
applies even under the scheduling rule that, when multiple
processors are available to a job, the slowest one is chosen
to execute that job. This may yield benefits from an energy
point of view.
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