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ABSTRACT

Increasingly complex and integrated systems design has led to more
timing uncertainty, which may result in pessimism in time-sensitive
system design and analysis. To mitigate such pessimism, mixed-
criticality (MC) design for real-time systems has been proposed,
where highly critical tasks, often with extremely pessimistic ex-
ecution time estimates, can share the processor with less critical
ones in a manner that the latter is sacrificed, completely or par-
tially, to guarantee temporal correctness to the former, when the
extremely pessimistic scenario does happen. In contrast to such
sacrifice of tasks, the precise MC scheduling model has recently
been investigated, where all tasks, including less critical ones, must
fully complete their execution in all circumstances. Meanwhile, the
processor may operate at a degraded speed when the tasks’ runtime
behaviors are far from the extreme pessimistic estimates and would
recover to the full processing speed once the extremely pessimistic
scenario does happen.

This paper presents a generalized fluid-scheduling-based solu-
tion to this problem, where feasible fluid-scheduling rates for each
task are derived from an optimization problem. Furthermore, this
paper proposes a novel algorithm F2VD for setting virtual deadlines
from any feasible fluid rates, such that any fluid-scheduling-based
solution can be converted to a deadline-based scheduling approach
with no schedulability loss, where the latter is generally considered
much more practical and easier to implement. Experimental stud-
ies based on randomly generated task sets are conducted to verify
the theoretical results as well as the effectiveness of the proposed
algorithms.
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1 INTRODUCTION

There is a trend in the design of computer systems in suiting general-
purpose computing and average run-time efficiency. When such
advanced design is applied for real-time computing purposes, it
often results in more significant variations of temporal behaviors.
For example, the worst-case execution time can be of the much
larger magnitude of the general average-case performance. How-
ever, worst-case timing guarantees must be provided in a real-time
system, and pessimistic assumptions on all uncertain behaviors are
made during certification processes. As a result, the gap between
general performance and the worst-case one is proliferating, and
a vast amount of computing resources can be wasted under nor-
mal circumstances. This gap can be enormous for functionalities
of high criticality (importance level), where extremely pessimistic
worst-case execution time (WCET) estimates are often applied.

Mixed-Criticality (MC) design for real-time systems has been
proposed, where functionalities of different levels of criticality are
facilitated onto a common computing framework to reduce resource
costs. Since Vestal’s pioneering work [36], the real-time systems
community has spent much effort in understanding, expanding, and
analyzing MC design (refer to [15] for an up-to-date review). How-
ever, criticisms have raised for most of these scheduling strategies.
These criticisms are centered around: (i) guaranteeing resources to
all the tasks under less pessimistic behaviors of the system and (ii)
protecting only more important (Hi-criticality) tasks under more
pessimistic behaviors, e.g., in the event of task overrun.

Recent works proposed degraded services to the less critical tasks,
and the released resources are used to guarantee Hi-criticality task
deadlines [14, 26]. The imprecise mixed-criticality system (IMC)
model results in relatively short WCET, and thus allows graceful
degradation of ro-criticality tasks in HI-criticality mode [5, 14, 31].
However, they do not fully address the recent criticism [17, 18]
regarding how MC models do not reflect current practice with
regard to ensuring robustness in safety-critical systems!.

The criticism mainly arises from the impreciseness of the exe-
cution of less critical functionalities, as a result of their execution
budget reduction in HI-mode. A recent paper [12] suggested a novel

!There is no criticism regarding the suitability of MC theory for verification aspects,
which is orthogonal to run-time robustness [2].
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precise MC scheduling framework, where all tasks receive full exe-
cution budget under all circumstances. By following the MC-Fluid
framework [6, 28] and leveraging the dynamic voltage and fre-
quency scaling (DVFS) technique, the processor execution speed
is minimized under normal circumstances, while resumed to full
speed when there is task overrun (characterized as a mode switch).
It provides closed-form equations for per-mode (fluid) execution
rate assignment for each task by restricting the inter-mode ratio of
rates to a common variable across all HI-tasks.

Recent works [7, 8, 27, 32] showed that MC scheduling pairing
with varying-speed processors could result in new and challenging
problems. However, there is an uncertainty that comes from the
varying speed, and Lo-tasks must be dropped or reduced to passively
react to an unpredictable speed degradation during runtime. In
contrast, our work (as well as [12]) considers the circumstances
where the operating system actively adjusts the processor speed.
In particular, the processor begins with a degraded speed but will
recover to the full speed (to meet all deadlines) when any Hi-task
shows abnormal worst-case behavior.

Contributions. The main contributions of this work are fourfold.

e We relax the common ratio restriction in [12], and provides
an optimal fluid-scheduling rates assignment framework for
precise MC scheduling on a varying-speed processor.

e We propose a novel algorithm F2VD, which can transpose
any fluid execution rates assignment to a virtual-deadline
setting. F2VD converts the theoretical fluid scheduling to the
priority-driven scheduling that is practical to implement.

e We also show that such transformation incurs no schedula-
bility loss. This implies that scheduling by virtual deadlines
dominates that by fluid rates, for the problem of precise MC
scheduling on a varying-speed processor. We further demon-
strate such dominance is strict, i.e,, not an equivalence, by
identifying a task set that is schedulable via EDF with virtual
deadlines but not feasible with any fluid rates assignment.

o Experimental studies based on randomly generated task sets
are conducted to verify the theoretical results as well as the
effectiveness of the proposed algorithms.

Organization. In the rest of the paper, we describe the system
model and the problem considered herein (Sec. 2), present a fluid
scheduling approach to solve the problem (Sec. 3), present algorithm
F2VD and prove its correctness (Sec. 4), discuss a dominance rela-
tionship implied by F2VD (Sec. 5), experimentally evaluate F2VD
(Sec. 6), discuss related work (Sec. 7), and conclude (Sec. 8),

2 SYSTEM MODEL AND THE PROBLEM

We consider a set of n implicit-deadline sporadic MC tasks 7 =
{71,712, -+, 7Tn}, where each task is specified by a 3-tuple as 7; =
(C}°, C}, T;). Each task ; releases a (potentially infinite) sequence
of jobs with a minimum release separation of T; time units and
every job has an absolute deadline T; time units after its release.
The worst-case execution requirement, which is defined by the
worst-case execution time on a unit-speed processor, of task z; is
estimated at two criticality levels: a Lo-criticality estimate C}° and
HI-criticality estimate C;", where it is assumed that Vi, CIL.O < le".
Besides, C;° (C}", respectively) is also the execution requirement
budgets of task 7; in the Lo (HI, respectively)-mode, which is to be

described later. In particular, C;O < C?‘ indicates that task 7; is a
HI-criticality task (HI-task) that may trigger a system mode switch,
whereas C;° = C}" indicates that task ; is a Lo-criticality task (vo-
task) that cannot trigger any system mode switch. Furthermore, the
™ job of task 7; is denoted by Ji,j» whose release time and absolute
deadline are denoted by r; j and d;_j, respectively.

We consider the problem of scheduling the set of tasks 7 on
a single processor whose executing speed may vary. The proces-
sor begins with a degraded speed p < 1.0, which indicates that
any workload being executed under this speed for t time units is
equivalent to that under a unit-speed processor for p X t time units.
During runtime, the amount of workload completed for each job is
being monitored. If any job J;,j has done C}° workload under the
degraded processing speed p (thus receiving a cumulative actual ex-
ecution time of C}°/p units) but still requires further execution, the
system is immediately notified, and the processor starts to perform
its full speed 1.0 right from that moment. We also call this moment
as the time instant of mode switch, from the Lo-mode (where the
processor speed is p) to the HI-mode (where the processor speed
becomes 1.0). The system can recover to the Lo-mode once the
processor becomes idle.

Note that, in contrast to a majority of existing work on MC sched-
uling, no task is entirely or partially dropped upon a mode switch,
and every job meets its absolute deadline at any system mode. The
difference between the two execution requirement budgets upon
the mode switch, i.e., Ci* — C}°, is compensated by the speed up-
grade. Furthermore, any job J; ; that has done C}" workload but
still not completed yet, is considered as erroneous and would be
terminated then. That is, only Hi-tasks, for which C?o < C;.“, could
trigger a mode switch.

3 FLUID SCHEDULING APPROACH

One idealistic approach to solve this scheduling problem is to adapt
the fluid scheduling model. In this model, each task receives a
fraction of a single processor, so that multiple tasks may progress at
specific rates simultaneously even on a single processor, as long as
the summation of the allocated rates does not exceed the processor
speed at any time instant.

In this paper, we focus on the dual-rate fluid scheduling,? where
each task 7; is assigned two constant executing rates in Lo- and
HI-modes, denoted by 6;° and 6;", respectively. A set of rates as-
signment pairs {(0}°, 07")}1, is feasible if and only if
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where all deadline are guaranteed to meet in both Lo- and HI-modes.
Note that, the algorithm proposed in [12] is also based on fluid
scheduling, and focused on rates assignments such that Vi, 0;°/0;"
are identical. Therefore, our focus in this paper—the set of task

>The conventional fluid scheduling assumes a single constant rate for each task,
whereas two rates, i.e., one rate change for each task, have been proposed and con-
sidered in the context of MC scheduling [6, 28]. Note that fluid scheduling with no
restriction on the number of rate changes can be too general and pointless. For example,
any actual schedule can be viewed as a fluid schedule where the rate for each task is
switching between 0 and 1.0.



systems that are schedulable under dual-rate fluid scheduling with
some rates assignment—is more general and is a super set of the set
of task systems that are schedulable by the algorithm in [12].

We next discuss how to form up the constraints on rates assign-
ment set {(0;°, 0;")}_, in order to guarantee all deadlines to be
met in both HI- and Lo-modes. First, for each task z;, all its jobs
that both are released and have a deadline in Lo-mode must meet
their deadlines if and only if

cre
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Second, for each task 7;, all its jobs that both are released and
have a deadline in HI-mode must meet their deadlines if and only if
cH

—lSTi,

o Vi:li<i<n )

Furthermore, the general idea of dual-rate fluid scheduling does
not necessarily dictate the relationship between ¢;° and 6;". Nonethe-
less, Theorem 3.1 shows that we can restrict out attention to non-
decreasing dual-rate fluid scheduling only, where it is required that

0 <0, Vi:1<i<n. ©)

THEOREM 3.1. Any task system that is schedulable under dual-
rate fluid scheduling must also be schedulable under non-decreasing

dual-rate fluid scheduling.

Proor. To see this theorem is true, we need to notice that if a task
system is schedulable under some dual-rate fluid scheduling where
9;0 > 0;” for some i, then this system must still be schedulable
when we assign 0;° « 07" This is because the total rate constraints
(1) and (2) cannot be violated by this assignment that reduces 6;°,
and Constraint (4) implies that a single constant execution rate of
07" in both Lo- and H1-modes for task 7; (which is the scenario for
7; after the reducing) guarantees all its deadlines met regardless
whether and where the mode switches, because CIL.° < C;”. [ |

Therefore, under the non-decreasing dual-rate assumption, for
each task 7;, its job (if any) that is released in Lo-mode but also
executes in HI-mode must meet its deadline (which is in HI-mode)
if and only if

LO HI LO
C; . Ci -Gy
LO HI
0; 0;

<T;, Vi:l<i<n. (6)

This is sufficient because C;°/0;° time units after its release is the
latest time for the mode switch to be triggered and the mode switch
is triggered earlier by any other job, the deadline must also be met
by (5). This is necessary because any Hi-task can be the one that
triggers the mode switch and executes up to exact C}" budget. We
can generally claim Vi in (6) because if 7; is a Lo-task (i.e, C;° = C}"),
then (6) reduces to (3).

Note that, each of the above equations is “if an only if” and
all three possible situations of a job (entirely in Lo or HI-mode,
and across the mode switch time instant) have been exhausted.
Therefore, Constraints (1)—(6) are a necessary and sufficient condi-
tion for the MC task system on the varying-speed processor to be
schedulable by any two-rate fluid scheduling.

With Constraints (1)—(6) and the additional set of non-negative
rate assignment constraints (6;° > 0, Vi), we have an optimization

problem with linear and linear fractional inequality constraints,
where 6;° and 0}" are variables and all others are problem input
constants. Thus, in total, there are O(n) variables, O(n) linear con-
straints, and O(n) linear fractional constraints, where n is the num-
ber of tasks. Efficient numerical solvers (such as fmincon [19] or
CVX [20] in Matlab) can be used to find a feasible solution.
Objective function. We have shown that the MC task system on
the varying-speed processor to be schedulable under two-rate fluid
scheduling if and only if a feasible solution exists for Constraints
(1)—(6). Therefore, an objective function is not necessary for de-
termining schedulability for a given degraded speed p. Thus, we
can simply choose a trivial objective function “minimize 1” when
applying the solver. On the other hand, if the degraded speed is not
given as part of the system setting, then we can replace Constraint
(1) by the following optimization objective:

min Z 0:°. (7)
i

4 ALGORITHM F2VD

Although the considered problem can be solved by the dual-rate
fluid scheduling as presented in Sec. 3, fluid scheduling is often
considered as an idealistic model for analysis but not practical to
implement due to potentially overwhelming runtime overheads for
frequent context switches.

In this section, we present our proposed algorithm F2VD 3, and
prove its correctness. F2VD is a deadline-based priority-driven
scheduling algorithm, which can be implemented in a similar man-
ner to the conventional EDF. In particular, inspired by the widely-
received MC scheduling algorithm EDF-VD [4], we focus on the
virtual-deadline based scheduling with potentially different virtual-
deadline settings [16] than the original EDF-VD [3]. Under virtual-
deadline based scheduling, in addition to the actual relative deadline
D, each task 7; is assigned a relative virtual deadline D; , i.e., every
job of task 7; has an absolute actual (virtual, respectively) deadline
D; (D}, respectively) time units after its release. In Lo-mode, jobs
are scheduled by their virtual deadlines, whereas they switch to be
scheduled by their actual deadlines upon a mode switch to HI-mode.
In Lo-mode (HI-mode, respectively), the earlier the virtual (actual,
respectively) deadline, the higher the priority.

Specifically, algorithm F2VD can be described as follows.

e Obtain a set fluid rate pairs {(0;°, 0;")}_, that is a feasible
solution for Constraints (1)—(6) as described in Sec. 3.

e Calculate the relative virtual deadline D] for each task z; by

L

1:0;__0'
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o The system begins with Lo-mode, where the processor is
operating at the degraded speed p and jobs are scheduled by
EDF according to their virtual deadlines.

e Once any job J; j has received C}° execution budget (i.e,
has executed for C}°/p time units in Lo-mode) but has not
completed yet, the system immediately switch to HI-mode,
where the processor recovers to its full speed, 1.0, and jobs
are scheduled by EDF according to their actual deadlines.

3“F2VD” stands for “fluid to virtual deadlines”



o If the processor becomes idle (i.e., all released workload has
been completed) in HI-mode, then the system switches back
to Lo-mode.

Finally, the correctness of F2VD, i.e., all deadlines are guaranteed
to meet under F2VD, is proven by Theorem 4.1.

THEOREM 4.1. If a feasible solution {(0}°, 0;")}I_, that satisfies
Constraints (1)—(6) can be found, then F2VD guarantees all deadlines
met in both Lo- and HI-modes.

Proor. Because {(0;°, 0;")}/_, is a feasible solution, by (1) and
(8), it is clear that all virtual deadlines in Lo-mode must be met
by the classic utilization based schedulability test of preemptive
EDF [30]. Furthermore, by (3) and (8), we have D < T; for all i,
i.e., every virtual deadline is no later than its corresponding actual
deadline. Thus, all actual deadlines in Lo-mode must be met as well.

In the rest of the proof, we focus on the actual deadlines in HI-
mode. We suppose that the system does switch to H1-mode, and
some actual deadlines in HI-mode are missed and then will show a
contradiction at the end. With this supposition, we let t* denote the
mode-switch time instant and let t; denote the first missed deadline,
which must be in HI-mode since all deadlines in Lo-mode are met
(as shown above). We then restrict our attention to a corresponding
minimal job set instance where we remove any workload that does
not impact, directly or indirectly, the scheduling of the job with its
deadline at t;. In other words,

Any further dropping or execution-requirement re-
ducing for any job in the minimal job set instance
must have an impact on the scheduling of the job
with its deadline at t;.

Without loss of generality, we define the earliest release time of
any job in the minimal job set instance as time 0, which is also
as known as the latest idle time instant before t; in the literature.
Therefore, in the minimal job set instance, we have

(M1) time interval [0, t;) must be a busy time interval;

(M2) all jobs that are released after t* and have actual deadlines
after t; must have been removed; and

(M3) all jobs that have virtual deadlines (and therefore also actual
deadlines) after t; must have been removed.

If t* <0, ie., the latest idle time instant before ¢4 is in HI-mode, it
is straightforward that the deadline at t; cannot be missed, given
that both (4) and (2) hold and [0, #4) is busy by (M1). Therefore, in
the rest of this proof and also the rest of this section, we focus on
the case that

0<t*<ty. 9)

By (M1), missing the deadline at ¢; implies that the total amount
of workload in this minimal job set instance W > p x t* + 1.0 X
(tg — t*). However, as proven in the following Lemma 4.2, for each
task 7;, such workload W; < 61° X t* + 07" x (t4 — t*). Therefore,

W= ZW,-SZG?OXt*+ZG?I><(td—t*)
1 1

1

< {by (3) and (4)}
pXE +1.0X(tg —t%),

which contradicts W > p X t* + 1.0 X (¢4 — t*). Therefore, the
supposition of missing deadlines is not true and the theorem follows.
|

The following lemmas are for supporting the last part in the
proof of Theorem 4.1, in a top-down structuring fashion. Therefore,
please note that they are all reasoning with respect to the minimal
Jjob set instance in the proof of Theorem 4.1 and (9) holds. Also, as
assumed in Theorem 4.1 that {(0}°, 0")}! | is a feasible solution,
Constraints (1)—(6) must hold.

LEmMA 4.2. For each task z;, the total amount of workload in the
minimal job set instance is upper bounded by

Wi < 0° Xt + 0" x (tg —t%),

Proor. This lemma is proven by discussing the following three
exhaustive cases about the job of 7; that is released before ¢* and
has an absolute deadline after t*.

e If 7; does not have a job J; j such that r; j < t* and d; j > t*,
then this lemma is established by Lemma 4.3 proven later.

e If 7; hasajob J; j suchthatr; j < t*,d; j > t*,and d; j < t4,
then this lemma is established by Lemma 4.4 proven later.

e If 7; hasajob J; j suchthatr; j < t*,d; j > t*,and d; j > t4,
then this lemma is established by Lemma 4.5 proven later.

LEMMA 4.3. If7; does not have a job J; j such thatr; j < t* and
dij > t*, then W; < 0;° X t* + 0 X (t7 — t7),

ProoOF. In this lemma, all released jobs (of 7;) before t* must
have their actual deadlines (and therefore their virtual deadlines)
before t*. Also, none of them can have workload beyond their Lo-
criticality WCET, as t* is the mode switch time instant. Therefore,
the workload from jobs released before t* is at most

t* t*
T xC{° < T x C°

1 1
< {by 3)}
0° x t*.
On the other hand, by (M2), the workload from jobs released at or
after t* is at most

VdTit J X Ci < % x Cit
< {by @)
07" x (tg —t).
Thus, the lemma follows. |

LEMMA 4.4. If7; has a job J; j such thatr; j < t*,d;j > t*, and
di,j < tq, then W; < 0;° X t+ 0 X (tg — t7),

Proor. Because rj j < t* < d; j < tg in this lemma, the work-
load by ; from its jobs released before r; ; is at most
rij rij
=L 1% C° < =L % cy°
T; T;
< {by 3)}
9;0 X Fi,j»



and the workload by ; from its jobs released after d; ; is at most

tqg —di;j tg —di,;

—= | X (' < ———=x "

A ey < M gy
< {by @)}
9;“ X (td - di,j).

In the rest of the proof, we focus on proving that the workload by
Ji,j» denoted by W;_;, must satisfy that

VVi,j < 9;70 X (t* — ri,j) + 9;" X (di,]’ — t*), (10)
by which the lemma follows. We prove (10) by discussing two cases
for the absolute virtual deadline of J; ;, denoted by d;

Casel: d] ;< t*. In this case, J; ; must have completed by d
by havmg done no more than C;° workload; otherwise the mode
switch must be triggered at or before d' < t*, which contradicts
the definition of ¢*. That is,
Wi, j < C°.
On the other hand,
9;‘0 X (i’* - ri,j) + 9;" X (di,j - t*)
> {because 6;° < 6"}
9;0 X (t>'F - ri’j) + 9;0 X (di,j - t*)
= 9?0 X (di,j - rl-,j) = 9}‘0 X T;
= {by 3)}
cy
P
Thus, (10) holds in this case.

Case2: d' . Because this system is schedulable under the

two-rate ﬂuld scheduhng it must hold that
9;-'0 X (di,j - r,-,j) + 9;” x (di,j - di,j) > C?I. (11)

Intuitively, it reflects the scenario that J; ; triggers a mode switch in
the fluid schedule. Alternatively, it is also implied by the necessary
condition (6) as

0;° x (df j —rij)+0;" x (di,j —d] ;)

=0;° x D} + 0" x (T; — D)

2 {by (8)}
6 x Co
ClO+ 0 x T — 4L
9;,0
= {by (6)}
c,

Furthermore, because 9;0 0“1 and d’ > t* in this case, we have

GlPox(d{’j—riJHG?‘x(dl-,j—di,j) < Q;OX(I‘*—rl"j)+9;ﬂ><(di’j—t*).
(12)
By (11) and (12),

9;-'0 X (t* - r,-,j) + 9;—“ X (di’j - t*) > Cll-'u.

Meanwhile, because J;,j is a single job of 7;, W; ; < C}" must always
hold. Thus, (10) holds in this case as well. |

LEMMA 4.5. If7; has a job J; j such thatr; j < t*,d; j > t*, and
dij > tg, then Wi < 62° X t* + 6 x (g — t*),

ProoF. Because r; j < t* in this lemma, the workload by 7; from
its jobs released before r; ; is at most

\‘rllJ CLO<_XCLO
T; T;
< {by 3)}
9;0 X ri,j»
Because d; j > t; and by (M2), any workload by 7; from its jobs

released after d; ; must have been removed in the minimal job set
instance. Therefore,

W; < 9;-‘0 Xrij+ Wij, (13)
where W; ; denotes the workload from J; ; in the minimal job set
instance (i.e., the amount of workload by J; ; that can have an
impact on the scheduling of the job with its deadline at t).

Because dj j > tg4, Ji,j cannot have any workload in HI-mode;
otherwise, such workload should have been removed in the minimal

job set instance. On the other hand, the workload from J; j in Lo-
mode cannot exceed C?O, ie.,

Wij < C% (14)
otherwise, it should have been an earlier mode switch before t*,
which contradicts the definitions of ¢*.

Furthermore, by (M3), the virtual deadline of J; j, denoted by
dlf ., must be no later than tg, i.e, d/ ; < t;z. Therefore,
5] L,]
9’70 x (t" —r; j) + 9171[ X (tg — t*)
> {because d i < tgand 0] > 6;°}

00 x (" - ri’j) +0° % (di’j —t)

=0;°x (dlf’j —ri,j) =0;°xDj,
which, by (8), implies
0° X (t" —rij) + 0" X (tg — 1) =2 C°. (15)
By (13), (14), and (15), the lemma follows. |

An interesting observation. For simplicity, we denote an arbi-
trary job by Ji and denote its virtual and actual absolute deadlines
by dl’( and dy.. Then, (M3) (that jobs with virtual deadlines after t4
is removed) is based on the following fact (C1).

(C1) For any two jobs J; and Jp, if d{ <d < dé < dy, then Jp

cannot have any impact on the execution of Jj.

Although the (M3) resulted from the above fact is already sufficient
for completing our proofs, one might wonder that: could we make
the following stronger claim?

(C2) For any two jobs J; and Ja, if d{ < dé and dy < dy, then J,

cannot have any impact on the execution of Jj.

At a glance, (C2) seems to make sense, because J; would have
strictly higher priority than J; in both Lo- and H1-modes. However,
(C2) is not true due to possible indirect impacts under the MC
(with potential mode switch) setting. Let us consider the potential
existence of another job J; such thatd] < dj < dj <d3 <d; <dy,
which satisfies that d] < d, and d; < dz. Then, because d; < dj,
Jo may have an impact on the scheduling of J3 in Lo-mode, which
inherently may have an impact on the scheduling of J3 in HI-mode.
Furthermore, in HI-mode, the scheduling of J5 clearly may have an
impact on the scheduling of J; due to d3 < d;. That is, J, might



indirectly impact the scheduling of Jj, even if d{ < dé and d; < dy.
Thus, (C2) is not true. In contrast, the condition in (C1) is sufficient
to eliminate such indirect impacts.

5 DISCUSSIONS ABOUT DOMINANCE

Given algorithm F2VD and its proven correctness, it, in fact, leads
to a dominance relationship between two families of scheduling
algorithms on the precise MC scheduling problem on a varying-
speed processor, namely the dual-rate fluid scheduling family and
the EDF-VD family.

A system is deemed schedulable by the dual-rate fluid scheduling
family if and only if there exists a dual-rate assignment so that
all deadlines in both Lo- and HI-modes are guaranteed met in all
circumstances — this is exactly what has been presented in Sec. 3.
On the other hand, a system is deemed schedulable by the EDF-VD
family if and only if there exists a virtual-deadline assignment so
that all deadlines in both Lo- and HI-modes are guaranteed met in
all circumstances — this is more general than being schedulable by
F2VD because the virtual-deadline assignment derived by F2VD
is just one such assignment and EDF-VD family includes all other
possible virtual-deadline assignments as well. Therefore, F2VD and
its correctness directly implies that the EDF-VD family dominates
the dual-rate fluid scheduling family with respect to schedulability,
as summarized in the following corollary.

COROLLARY 5.1. Any task system that is schedulable by the two-
rate fluid scheduling family is also schedulable by the EDF-VD family.

Proor. It directly follows from Theorem 4.1 and the facts that
Constraints (1)—(6) are a necessary and sufficient condition for the
schedulability by any two-rate fluid scheduling as discussed in Sec. 3
and F2VD always results in a subset of the EDF-VD family. |

Furthermore, the following lemma shows that this is a strict
dominance, instead of a potential equivalence, relationship between
the two families.

LEMMA 5.2. There exists a system that is schedulable by the EDF-
VD family under some virtual-deadline setting but is not schedulable
by dual-rate fluid scheduling family under any rates assignment.

ProorF. This lemma is a “there exists” statement and there can
be proven by the following specific example.

We consider a varying-speed processor of degraded speed 0.5
and full speed 1.0 and an MC task set consisting of just two implicit-
deadline Hi-tasks 71 and 72 that have the parameters summarized
in the table in Fig. 1. We also assume the tasks are synchronous
(i.e., both tasks starting job releases at time 0) and periodic (i.e., job
release separation is always exact T; time units).

For this system, a virtual-deadline assignment of D; =2, Dé =6
would guarantee all deadlines to be met in any circumstance. Fig. 2
shows the two edge cases. Namely, Fig. 2(a) shows the scenario
where 71 does not trigger the mode switch but 7, does later, and
Fig. 2(b) shows the scenario where 7 triggers the mode switch.
Moreover, if neither task triggers the mode switch, it is clear that
both of them must complete by their respective virtual deadlines
— we omit a figure for this case. Note that a similar pattern of one
of the three cases above would happen every 8-time units, i.e., the
typical period shared by the two synchronous, periodic tasks.

Task || C° | C¥ | Ty
T1 1 3 8
n || 2] 43

Figure 1: Example task system in Lemma 5.2.
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Figure 2: Illustration for different scenarios of the schedule
under the virtual-deadline based scheduling.

On the other hand, we would argue that this system cannot be
schedulable by dual-rate fluid scheduling under any rates assign-
ment. We consider the scenario that the first jobs of both tasks
will need to execute up to their Hi-criticality budgets, i.e, C1/™=3
and Cz /™= 4. Note that, the system cannot be clairvoyant to know
this from the beginning but still needs to start with the degraded
speed and only commit a mode switch when either of the two tasks
exhausts their Lo-criticality execution budget. We discuss the fol-
lowing two exhaustive cases under any dual-rate fluid scheduling.

(i) 71 exhausts the amount of C}° execution budget no later

than 7, exhausts the amount of C}° execution budget.

(ii) 71 exhausts the amount of C}° execution budget later than

72 exhausts the amount of C3° execution budget.

In Case (i), it is clear that 72 must receive positive (non-zero)
execution rate in Lo-mode, i.e., 921‘ > 0; otherwise, it will surely miss
its deadlines if no mode switch ever happens. Therefore, GIL <0.5
because 0{‘ + HZL < 0.5, which is the degraded processor speed in
ro-mode. This means that the time instant ¢t* for the mode switch
by task 7y must be t* > C}°/ 9{“ > 2. As a result, the total execution
budget received by both tasks in the first period is 0.5¢* + (8 — t*) <
7. Because total execution requirement by the two tasks can be
C{' + C3' = 7 in the window [0, 8), at least one of the tasks must
miss a deadline at time 8, no matter how the fluid rates are assigned.

In Case (ii), because the degraded speed in Lo-mode is 0.5. The
time instant ¢* for the mode switch by task 7, mustbe t* > C;°/0.5 =
4. As a result, the total execution budget received by both tasks in
the first period is 0.5t + (8 — t*) < 6 < 7. For the same reason as
in Case (i), at least one of the tasks must miss a deadline at time 8,
no matter how the fluid rates are assigned. |

Thus, we can conclude the following theorem.

THEOREM 5.3. For the precise MC scheduling problem on a varying-
speed processor, the EDF-VD family strictly dominates the two-rate
fluid scheduling family with respect to schedulability.

Proor. It follows from Corollary 5.1 and Lemma 5.2. |

This result is very inspiring and quite counter-intuitive. In many
scheduling problems, especially when implicit-deadline tasks are
considered, fluid scheduling often results in the best schedulability
in theory, though it can be impractical to implement. For example,
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Figure 3: Comparison of schedulability ratio between F2VD,
EDF-VD and the MCF. We vary the p values with other fixed
parameters (i.e., [Ujown, Uup]l = [0.02,0.2];[Tyouwn, Tup] =
[5, 501 [Zdgowns Zup] =[1,4];P = 0.5).

the optimal speedup factor of 4/3 for multiprocessor MC scheduling
is achieved via fluid scheduling [6], while EDF-VD can only achieve
a much worse speedup factor of 8/3. It is no longer the case for the
problem considered in this work (and [12]). In future work, we plan
to further explore the solution space of the entire EDF-VD family to
achieve an even better understanding of the precise MC scheduling
problem on a varying-speed processor.

6 EVALUATION

In this section, we report the performance of F2VD through experi-
mental results, conducted on a randomly generated task-set. We
also compare our algorithm with the approaches studied in [12]. To
generate a random task-set, we use the workload generation model
proposed by Guan et al. [21]. We describe the input specifications
to generate the workload (used in this experiment) as follows:

® Upound: the upper bound of the system utilization.

® [Ti0wn» Tupl: the range of the minimum inter-arrival period
of a task ,i.e., 0 < Tgoyp < Ti < Typ.

¢ [Ugown> Uupl: the range of the utilization of a task. This value
(let us denote it by u;) is used to to obtain execution time of
a task in the Lo-mode, i.e.,, V7; € T : ¢; = u; X T;, where, 0 <
Udown S ui <Uyp < 1.

® [Z4o0wn»> Zup): the range of the ratio of 1 and ro-criticality
WCET, here 1 < Zggyn < Zup.

o P: the probability that a task is a H1-task. Here, 0 < P < 1

Finally, we compare our algorithm with the following baselines:

e EDF-VD [12] and MCF [12], respectively denoted by p =
X(EDF — VD) and p = X(MCF), where X = p values.

In our experiment, we change the value of p (ranging from
[0.5,0.6]) and the system utilization Uy, 4 (ranging from [0.7,1.0]),
and report the schedulability ratio, which is defined as the ratio of
scheduled task-sets over the total number of task-sets. In Fig. 3,
we show the comparison (w.r.t schedulability ratio) between our
algorithm, EDF-VD, and the MCF for different utilization and p
values. Fig. 3 reports that our approach outperforms both the EDF-
VD and MCF approaches by large margin. All these approaches
follow the same trend, i.e., for any p values, schedulability ratio
decreases when system utilization increases. While, for the same
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Figure 4: Comparison of schedulability ratio between F2VD,
EDF-VD and the MCF. We vary the p values with other fixed
parameters (i.e., [Ujown Uup]l = [0.02,0.2];[Tyoryn, Tup] =
(5,501 [Zdowns Zup] = [1,8];P = 0.5).

system utilization and p value, the schedulability ratio of our ap-
proach is almost twice as large compared to the other approaches.
Similar to the Fig. 3, we report the performance comparison (w.r.t.
schedulability ratio) for these three approaches in Fig. 4 with a
different [Zg4.yp, Zup]| value. Compared to the previous evaluation
setup (i.e., [Zgown» Zup] = 4), we observe a similar improvement
in the schedulability ratio for our approach.

In Fig. 5, we report the time needed (with and without an ob-
jective function, refer to Sec. 3 for details) by F2VD to return the
solution for a different size of task-set. We use the CVX solver [20]
(in Matlab) to achieve a feasible solution. As expected, we observe
a proportional relationship between the task-set size and the time
needed (to return a feasible solution, if any) by the CVX solver. For
a small task-set, we also see an improvement in the time when we
use the solver without an objective function. Finally, these results
do not demonstrate a significant variation in the time required to
return a solution (with and without the objective function) with
the changes in system utilization.

In Fig. 6, we report the percentage of the feasible solution, i.e.,
(the ratio of the number of the task sets for which F2VD returns a
feasible solution over the total number of task sets), under different
utilization and p values. From this figure, we observe that our algo-
rithm finds a solution on average 70% cases. Also, we observe that
the success percentage drops when the system utilization increases.
This is because higher system utilization often leads to a system
that is more difficult to schedule, which results in the optimization
problem becoming harder or even infeasible to solve.

7 RELATED WORK

Since the seminal work by Vestal et al. [36], there has been extensive
research on real-time scheduling of the sequential and parallel work-
load model in an MC platform, few to mention [1, 4, 7, 9, 13, 16, 29].
Most of these works considered that the system starts in the normal
(Lo-) mode, and unless there is a task overrun, all the tasks are
guaranteed execution w.r.t their Lo-WCET. However, if the system
switches its criticality level (from Lo to HI), e.g., due to a task over-
run, the Hi-tasks receive full service guarantee, while the Lo-tasks
receive no service guarantee [4, 7, 8, 16, 22, 25]. Most of these works
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Figure 5: Time needed by F2VD to return the solution for a
different size of task-set. We set the value of p to 0.5 with
other fixed parameters as in Fig. 3.
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Figure 6: Percentage of solution returned by the F2VD al-
gorithm under different utilization and p values with other
fixed parameters as in Fig,. 3.

have provided the schedulability analysis for this model consider-
ing the EDF-VD scheduling policy. A fluid model-based scheduling
policy (each task executes at a speed dependant to its criticality
level), MC-Fluid, was proposed by Lee et al. [28]. As the real hard-
ware platforms can not directly implement the MC-Fluid scheduling
policy, Lee et al. [28] also proposed MCDP-Fair, which can be im-
plemented on a real platform while preserving the properties of the
MC-Fluid. Based on the concept of the MC-Fluid, Baruah et al. [6]
proposed MCF, a simplified yet improved algorithm (w.r.t.speedup
bound). In a dual-criticality platform, Baruah et al. [6] proved an
improved speedup bound of at most 1.33 for MCF. However, none
of them considered energy-awareness in an MC platform.

Although a significant amount of works studied the energy-
aware real-time task scheduling in the non-MC platform (few to
mention [10, 11, 23, 24, 33, 34]), little progress has been made on
energy-aware scheduling in the MC platform. Huang et al. [27]
proposed an energy-aware scheduling by increasing the processor
speed after a mode-switch. Narayana et al. [32] extended this work
to the multi-core platform. All these works assumed that none of
the Lo-tasks receive service in the HI-mode.

Ernst et al. [17] and Esper et al. [18] criticized the MC model
discussed above of being impractical as this model provides no
service guarantee to any of the Lo-tasks during HI-mode. The work
proposed by Burns et al. [14] and Su et al. [35] considered executing

the Lo-tasks with an extended time. Some recent works proposed
the IMC model [5, 14, 31]. In this model, degraded service are
provided to the Lo-tasks even in the HI-mode. Unlike these works,
Bhuiyan et al. [12] proposed an energy-aware scheduling policy
(based on EDF-VD and MCF) where all the Lo-tasks are guaranteed
to receive full service even in the HI-mode. However, (for the MCF
algorithm), they restricted the inter-mode processor share ratio to
a common variable across all Hi-tasks.

8 CONCLUSION

Conventional MC scheduling design in real-time systems sacrifices
the less critical tasks, entirely or partially, to guarantee temporal cor-
rectness to the more critical ones, when the extremely pessimistic
scenario does happen. As a result, the computation of less criti-
cal (but not non-critical) tasks can be rendered imprecise if not
completely dropped. In this paper, we have studied the problem
of precise MC scheduling on a varying-speed processor, where all
tasks, including less critical ones, must fully complete their exe-
cution in all circumstances. Meanwhile, the processor may begin
with operating at a degraded speed and will recover to the full
processing speed to cover the additional computation requirement
once extremely pessimistic scenarios do happen during runtime.
We have investigated solving this problem by dual-rate fluid
scheduling. We formulated the problem of finding feasible execu-
tion rates for each task as an optimization problem, which can be
solved by numerical solvers that are readily available in Matlab. To
overcome potential difficulties in implementing fluid scheduling, we
have proposed algorithm F2VD, which is a virtual-deadline based
scheduling algorithm and, therefore, is considered much more prac-
tical to implement than fluid scheduling. In particular, F2VD sets
the virtual deadlines for the tasks by any feasible execution rates
assignment if there exists one, and can guarantee all deadlines are
met. Consequently, the existence and correctness of F2VD lead to
the fact that the EDF-VD family strictly dominates dual-rate fluid
scheduling in schedulability for the precise MC scheduling on a
varying-speed processor. We have also conducted experiments to
demonstrate the presented results and to evaluate the effectiveness
of the proposed algorithm F2VD.
Future work. The direct next step of this work would be extending
the underlying uniprocessor platform to a multiprocessor one. A
key system configuration would be whether each of the multiple
processors is able to adjust their operating speed independently or
all (or a group of) processors must always be at the same speed. Each
assumption may correspond to a certain set of hardware platforms
and may result in a distinct variant of the scheduling problem.
Moreover, as discussed in Sec. 5, exploring the solution space of the
entire EDF-VD family that may not relate any fluid execution rates
can be another interesting problem to study. This investigation can
be directed in either a single or multiple varying-speed processors.

ACKNOWLEDGMENTS

We would like to thank Prof. Sanjoy Baruah from Washington
University in St Louis for sharing his valuable insights. This work
is supported by NSF grant CNS-1850851, a start-up grant from the
University of Central Florida, and start-up and REP grants from
Texas State University.



REFERENCES

(1]

(2]

[3

[10

(1]

[12]

[14]

[15]

[16

[17

[23

[24

Sanjoy Baruah. 2016. The federated scheduling of systems of mixed-criticality
sporadic DAG tasks. In 2016 IEEE Real-Time Systems Symposium (RTSS). IEEE,
227-236.

S. Baruah. 2018. Mixed-Criticality Scheduling Theory: Scope, Promise, and
Limitations. IEEE Design Test 35, 2 (2018), 31-37.

Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo DAngelo, Haohan Li, Alberto
Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. 2012. The pre-
emptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic
task systems. In Proceedings of the 24th Euromicro Conference on Real-Time Systems
(ECRTS), IEEE. IEEE, 145-154.

Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’angelo, Haohan Li, Alberto
Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. 2015. Preemptive
uniprocessor scheduling of mixed-criticality sporadic task systems. Journal of
the ACM (JACM) 62, 2 (2015), 14.

Sanjoy Baruah, Alan Burns, and Zhishan Guo. 2016. Scheduling mixed-criticality
systems to guarantee some service under all non-erroneous behaviors. In Pro-
ceedings of the 28th Euromicro Conference on Real-Time Systems (ECRTS), IEEE.
IEEE, 131-138.

Sanjoy Baruah, Arvind Easwaran, and Zhishan Guo. 2015. MC-Fluid: simplified
and optimally quantified. In 2015 IEEE Real-Time Systems Symposium. IEEE, 327—
337.

Sanjoy Baruah and Zhishan Guo. 2013. Mixed-criticality scheduling upon varying-
speed processors. In 2013 IEEE 34th Real-Time Systems Symposium. IEEE, 68-77.
Sanjoy Baruah and Zhishan Guo. 2014. Scheduling mixed-criticality implicit-
deadline sporadic task systems upon a varying-speed processor. In Proceedings
of the 35th Real-Time Systems Symposium (RTSS), IEEE. IEEE, 31-40.

Sanjoy K Baruah, Alan Burns, and Robert I Davis. 2011. Response-time analysis
for mixed criticality systems. In 2011 IEEE 32nd Real-Time Systems Symposium.
IEEE, 34-43.

Ashikahmed Bhuiyan, Zhishan Guo, Abusayeed Saifullah, Nan Guan, and Haoyi
Xiong. 2018. Energy-efficient real-time scheduling of DAG tasks. ACM Transac-
tions on Embedded Computing Systems (TECS) 17, 5 (2018), 84.

Ashikahmed Bhuiyan, Di Liu, Aamir Khan, Abusayeed Saifullah, Nan Guan, and
Zhishan Guo. 2020. Energy-Efficient Parallel Real-Time Scheduling on Clustered
Multi-Core. IEEE Transactions on Parallel and Distributed Systems 31, 9 (2020),
2097-2111.

Ashikahmed Bhuiyan, Sai Sruti, Zhishan Guo, and Kecheng Yang. 2019. Precise
scheduling of mixed-criticality tasks by varying processor speed. In Proceedings
of the 27th International Conference on Real-Time Networks and Systems. ACM,
123-132.

Ashikahmed Bhuiyan, Kecheng Yang, Samsil Arefin, Abusayeed Saifullah, Nan
Guan, and Zhishan Guo. 2019. Mixed-Criticality Multicore Scheduling of Real-
Time Gang Task Systems. In 2019 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 469-480.

Alan Burns and Sanjoy Baruah. 2013. Towards a more practical model for mixed
criticality systems. In Workshop on Mixed-Criticality Systems (colocated with
RTSS).

Alan Burns and Robert I Davis. 2017. A survey of research into mixed criticality
systems. ACM Computing Surveys (CSUR) 50, 6 (2017), 82.

Pontus Ekberg and Wang Yi. 2014. Bounding and shaping the demand of gen-
eralized mixed-criticality sporadic task systems. Real-time systems 50, 1 (2014),
48-86.

Rolf Ernst and Marco Di Natale. 2016. Mixed Criticality Systems - A History of
Misconceptions? IEEE Design & Test 33, 5 (2016), 65-74.

Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, and Eduardo Tovar. 2015.
How realistic is the mixed-criticality real-time system model?. In Proceedings
of the 23rd International Conference on Real Time and Networks Systems. ACM,
139-148.

Fmincon 2018. https://www.mathworks.com/help/optim/ug/fmincon.html.
Michael Grant and Stephen Boyd. 2014. CVX: Matlab Software for Disciplined
Convex Programming, version 2.1. http://cvxr.com/cvx.

Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. 2013. Improving the
scheduling of certifiable mixed-criticality sporadic task systems. Technical Report
2013-008 (2013).

Zhishan Guo and Sanjoy Baruah. 2015. The concurrent consideration of uncer-
tainty in WCETs and processor speeds in mixed-criticality systems. In Proceedings
of the 23rd International Conference on Real Time and Networks Systems. ACM,
247-256.

Zhishan Guo, Ashikahmed Bhuiyan, Di Liu, Aamir Khan, Abusayeed Saifullah,
and Nan Guan. 2019. Energy-Efficient Real-Time Scheduling of DAGs on Clus-
tered Multi-Core Platforms. In 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 156-168.

Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan, and Haoyi
Xiong. 2017. Energy-efficient multi-core scheduling for real-time DAG tasks.
(2017).

Zhishan Guo, Luca Santinelli, and Kecheng Yang. 2015. EDF schedulability
analysis on mixed-criticality systems with permitted failure probability. In 2015
IEEE 21st International Conference on Embedded and Real-Time Computing Systems
and Applications. IEEE, 187-196.

Zhishan Guo, Kecheng Yang, Sudharsan Vaidhun, Samsil Arefin, Sajal K Das, and
Haoyi Xiong. 2018. Uniprocessor Mixed-Criticality Scheduling with Graceful
Degradation by Completion Rate. In 2018 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 373-383.

Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar Thiele.
2014. Energy efficient dvfs scheduling for mixed-criticality systems. In Proceedings
of the 14th International Conference on Embedded Software, ACM. ACM, 11.

[28] Jaewoo Lee, Kieu-My Phan, Xiaozhe Gu, Jiyeon Lee, Arvind Easwaran, Insik Shin,

and Insup Lee. 2014. Mc-fluid: Fluid model-based mixed-criticality scheduling
on multiprocessors. In 2014 IEEE Real-Time Systems Symposium. IEEE, 41-52.
Jing Li, David Ferry, Shaurya Ahuja, Kunal Agrawal, Christopher Gill, and
Chenyang Lu. 2017. Mixed-criticality federated scheduling for parallel real-time
tasks. Real-time systems 53, 5 (2017), 760-811.

Chung Laung Liu and James W Layland. 1973. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the ACM (JACM) 20, 1
(1973), 46-61.

Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor Stefanov, and
Wang Yi. 2016. EDF-VD scheduling of mixed-criticality systems with degraded
quality guarantees. In Proceedings of the 37th Real-Time Systems Symposium
(RTSS), 2016 IEEE. IEEE, 35-46.

Sujay Narayana, Pengcheng Huang, Georgia Giannopoulou, Lothar Thiele, and
R Venkatesha Prasad. 2016. Exploring energy saving for mixed-criticality systems
on multi-cores. In Proceedings of the 22nd Real-Time and Embedded Technology
and Applications Symposium (RTAS), IEEE. IEEE, 1-12.

Antonio Paolillo, Joél Goossens, Pradeep M Hettiarachchi, and Nathan Fisher.
2014. Power minimization for parallel real-time systems with malleable jobs
and homogeneous frequencies. In 2014 IEEE 20th International Conference on
Embedded and Real-Time Computing Systems and Applications. IEEE, 1-10.
Antonio Paolillo, Paul Rodriguez, Nikita Veshchikov, Joél Goossens, and Ben
Rodriguez. 2016. Quantifying energy consumption for practical fork-join par-
allelism on an embedded real-time operating system. In Proceedings of the 24th
International Conference on Real-Time Networks and Systems. ACM, 329-338.
Hang Su and Dakai Zhu. 2013. An elastic mixed-criticality task model and its
scheduling algorithm. In Proceedings of the Conference on Design, Automation and
Test in Europe. EDA Consortium, 147-152.

S. Vestal. 2007. Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance. In Proceedings of the 28th IEEE Real-Time
Systems Symposium (RTSS).


http://cvxr.com/cvx

	Abstract
	1 Introduction
	2 System Model and the Problem
	3 Fluid Scheduling Approach
	4 Algorithm F2VD
	5 Discussions about Dominance
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

