
Poster: Unraveling Reward Functions for Head-to-Head
Autonomous Racing in AWS DeepRacer

Allen Tian
atian2005@uchicago.edu
University of Chicago
Chicago, Illinois, USA

Eddy Guerra John
guerrajohne1@gator.uhd.edu

University of Houston Downtown
Houston, Texas, USA

Kecheng Yang
yangk@txstate.edu

Texas State University
San Marcos, Texas, USA

ABSTRACT
AWS DeepRacer is a fully autonomous 1/18th scale race car de-
signed to help developers learn and practice reinforcement learn-
ing through cloud-based simulations and real-world racing. What
drives the reinforcement learning model is the reward function, a
way to provide positive or negative feedback to an agent, guiding its
learning process in reinforcement learning by assigning numerical
values. In the AWS training environment, there are multiple modes
in which you can run training simulations and evaluations in. These
modes include Time Trial, Object Avoidance, and a relatively new
mode: Head to Bot. The research done in this project was primarily
focused on testing reward functions in the Head to Bot mode as
well as developing a research function that would be suited for
training in this new Head to Bot mode. The developed algorithm
outperformed the default Centerline reward function, as well as
the Object Avoidance reward function.

CCS CONCEPTS
• Computing methodologies → Machine learning; Artificial
intelligence.

KEYWORDS
machine learning, artificial intelligence, reinforcement learning,
reward function, autonomous racing

ACM Reference Format:
Allen Tian, Eddy Guerra John, and Kecheng Yang. 2023. Poster: Unraveling
Reward Functions for Head-to-Head Autonomous Racing in AWS Deep-
Racer. In The Twenty-fourth International Symposium on Theory, Algorithmic
Foundations, and Protocol Design for Mobile Networks and Mobile Computing
(MobiHoc ’23), October 23–26, 2023, Washington, DC, USA. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3565287.3617987

1 INTRODUCTION
The AWS DeepRacer is an autonomous 1/18th scale race car that
has the ability to drive on a track or race other vehicles on a track.
The DeepRacer is often used for developers to become familiar with
the machine learning technique known as reinforcement learning.
Reinforcement learning is a method of machine learning training

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MobiHoc ’23, October 23–26, 2023, Washington, DC, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9926-5/23/10.
https://doi.org/10.1145/3565287.3617987

that is based on rewarding positive behaviors and punishing nega-
tive behaviors through the reward function. As of the writing of
this paper, there are three modes in the training environment; Time
Trial, Object Avoidance, and a newly created Head to Bot. The Time
Trial and Object Avoidance modes each have an example reward
function tailored to the mode on the AWS website [1], but for the
Head to Bot mode, there is no such thing.

The goal with this project was to test how the example reward
functions would fare in the Head to Bot mode, as well as attempt
to develop a reward function that outperforms the sample reward
functions and more efficiently navigates the Head to Bot mode.

1.1 Reinforcement learning
The machine learning method used in the AWS DeepRacer is re-
inforcement learning. The reinforcement learning method trains
the model through a trial and error process, rewarding desired
behaviors and punishing undesired behaviors. The model begins
randomized, but as more training iterations occur, its movements
become more refined and begin to achieve optimization. The driv-
ing force in this method is the reward function, which assigns the
reward that the agent receives from its actions. By factoring in
environmental variables such as distance to the next object and
position on the track into the way we calculate our reward, we can
influence the way the model trains, allowing us to tailor our reward
function to an environment to achieve better training results.

1.2 Different Modes and Reward Functions
In the DeepRacer training platform, there are 3 modes that you
can train the vehicle in; Time Trial, Object Avoidance, and Head to
Bot. Time Trial is the first and most basic mode, which involves an
agent on an empty track. If the vehicle exits the track, it will have
effectively crashed and be placed back on the track. The Centerline
reward function, which is the reward function tailored to this mode,
rewards the highest in the middle and calculates 3 markers that get
increasingly further from the center line. As the agent hits each
of these markers, the reward is decreased, with the lowest reward
value assigned at the edge of the track.

The second mode in the training platform is Object Avoidance.
Instead of just having an agent in an environment, there are now
static objects placed on the track. The vehicle must now avoid these
objects as well as stay between the two edges of the track. If the
agent crashes or goes off track, it will be placed back on track.
The Object Avoidance function takes these factors into account by
creating two individual rewards, one for staying on the track, and
the other for navigating around the objects. The reward function
first assigns a reward if it is between the two edges of the track.
Then the reward function will calculate whether the vehicle is on

https://orcid.org/919-525-7743
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3565287.3617987
https://doi.org/10.1145/3565287.3617987


MobiHoc ’23, October 23–26, 2023, Washington, DC, USA A. Tian, E. Guerra, and K. Yang

track to collide with the next object. If so, then it will begin to
reduce the reward as it crosses the three distance thresholds. If it is
not on the same path, the highest reward will be assigned. In the
end, both rewards will be weighted, added, and assigned.

The third and final mode that exists in the AWS DeepRacer Train-
ing platform is the Head to Bot racing mode. All other conditions
hold true from the Object Avoidance mode, except now the static
objects placed on the track are now dynamic. This is the mode
where all the research in this project will be conducted. Unlike
the previous two modes, this is a relatively new mode, with little
research done on it. We aim to design a reward function that is
suited for training in this mode.

1.3 Parameters of the Environment
There are also parameters of the environment that are modifiable
by the user. The ones that were modified in this project are the
number of boxes, the number of bot cars, as well as speed of bot
cars. The track is also modifiable, but we used the default track in
the platform for this project.

2 BACKGROUND
In the past, there have been documentations[2] of an algorithm for
DeepRacer vehicle to allow multi-vehicle applications. However,
this application was not created through reinforcement learning,
and a specific algorithm was followed. Because of the novelty of dy-
namic object applications in AWS DeepRacer, as well as the lack of
research on AWS DeepRacer as a whole, there are not many exam-
ples to compare results and methodologies with. However, among
the existing examples, our methodology aligns similarly with a
recent documentation[3] although altered to accommodate for the
Head to Bot mode, but the results(Elapsed Time) are drastically
different as our experiment changed many different environmental
variables which would drastically alter the results, as well as was
run in a completely separate mode with dynamic objects.

3 METHODOLOGY
Now that we understand how the model trains and the role of the
reward function in the training of the DeepRacer model, we want
to test the Centerline and Object Avoidance reward functions in
the Head to Bot training mode. We want to see if we can gain any
insight into what techniques are successful in this mode, as well as
overall assess the performance of each function in this mode.

3.1 Testing of Centerline and Object Avoidance
Reward Functions

Since we would like to assess the effectiveness of each reward func-
tion in this newmode, wemust design an experiment that will allow
us to compare the reward functions in a quantifiable manner. We
will train each reward function(Centerline and Object Avoidance)
for one hour in the Head to Bot racing mode. We chose one hour[3]
because it gives the model enough time to begin maturing, but not
enough for all the model’s performances to begin converging.

3.2 Parameter Modifications
We set the number of bot cars to 3, as well as changed the speed
of bot cars from 0.2 to 0.4. The reason we made these changes is
that 3 bot cars allow the agent to have a good mix of navigation of
dynamic objects as well as staying within the two borders. If the
number of bot cars is too few, then the agent will have fewer chances
to navigate dynamic objects, thus resulting in poorer navigation
of the bot cars. If the number of bot cars is too many, then the
agent will be constantly fixated on navigating the next bot car and
the agent’s performance in staying between the borders will suffer.
With 3 bot cars equally spaced around the track, we have a good
mix with stretches of no bot cars as well as sufficient opportunity
for the agent to practice the navigation of a bot car. Additionally,
we changed the speed of the bot cars from 0.2 to 0.4, as 0.2 was
far too slow relative to the agent. With 0.4 speed, the agent has
far more difficulty passing the bot car, but would still be able to
maneuver around it.

3.3 Evaluation Mode and Metrics
Once each model was trained for one hour, we evaluated the model
under evaluation mode. We set the evaluation to run for 10 laps, let
the trained model undergo the evaluation, and store the evaluation
metrics in a file. The metrics that we used for this experiment were
crash count, off-track count, and elapsed time. We chose these met-
rics as they give a good indicator of overall performance, factoring
in speed, staying between the edges, and navigating around the bot
cars.

3.4 Prototype Reward Function
So after seeing the results of the Centerline and Object Avoidance
reward functions, we realized that the object avoidance reward
function was actually very good at avoiding dynamic objects as
well as static objects. The only thing we wanted to change with it
was how it assigns the maneuver reward. In the Object Avoidance
reward function, it essentially rewards the agent for not going in
the wrong direction. We wanted to add an additional reward for
going in the right direction, to especially reinforce the correct path
in passing the moving vehicle.

The original Object Avoidance function calculates whether the
vehicle is on track for collision and then decreases the reward. We
used that to our advantage and added an additional reward that first
checks whether it is on track for collision. If not, then it checks if
it’s going to run off the track, if both of those are negative, then we
assign the additional reward that gets higher as we get closer to the
next object, as it would mean we are not going to collide with that
object. Summed up, we are essentially rewarding good behavior as
well as punishing bad behavior at the same time. The Prototype
reward function will undergo the same experiment and the data
will be compared alongside the other two reward functions.

4 RESULTS
In the first metric of average elapsed time per lap, we saw that
the Prototype model was able to outperform the other two models
by a significant margin, yielding average differences of 1586 and
7011 milliseconds with the Object Avoidance model and Centerline
model respectively.



Poster: Unraveling Reward Functions for Head-to-Head Autonomous Racing in AWS DeepRacer MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

In the second metric of average crashes per lap, the Prototype
model was again able to outperform the other two models, yielding
average differences of 0.1 and 1.6 crashes per lap with the Object
Avoidance model and Centerline model respectively

In the third metric of off-track count, the Centerline model was
actually able to outperform the Prototype and Object avoidance
model by a significant margin, averaging 0.5 off-track counts per lap
in contrast with the other two models both averaging 0.8 off-track
counts per lap.

Overall, the Prototype model yielded more favorable results in
2/3 tests(average elapsed time, average crashes per lap) that were
performed and did not show any deterioration from the Object
Avoidance function that it was based on in the average off-track
count per lap.

Figure 1: Average Elapsed Time Per Lap Per Function

Figure 2: Average Crashes Per Lap Per Function

Figure 3: Average Off-track Count Per Lap Per Function

5 DISCUSSION
In themetric of average elapsed time per lap, the Centerline function
performed poorly as expected as all it is programmed to do is to
follow the Centerline. The Object Avoidance function fared well,
but the Prototype function averaged 1586ms faster on average,
showing that reinforcement of the optimal path is having some
effect, decreasing the average lap time by a small margin.

In the metric of average crashes per lap, the Centerline function
exhibited the most crashes. This makes sense as the Centerline
function only takes the Centerline into account, disregarding ob-
jects. Again we see the Prototype function beating out the Object
Avoidance function by a thin margin, averaging 0.1 fewer crashes
per lap. While this margin isn’t very substantial, it demonstrates
that the idea of reinforcement of the best path has potential.

In the metric of average off-track per lap, we see a dramatic
performance increase in the Centerline function, faring best in this
discipline by a significant margin. This makes sense as the nature
of the Centerline function is purely to follow the Centerline and not
go near the edges of the track. We don’t see any difference between
the Object Avoidance and Prototype function, but they both still
fared relatively well with less than one off-track per lap on average.

6 CONCLUSION
Overall, in this experiment, we were able to see how different re-
ward functions affected the training outcome in the Head to Bot
racing mode. The Centerline function suffered in performance for
the majority of the metrics but performed well in the metric that
aligns with its design. The Object Avoidance function performed
well in the Head to Bot mode, adapting very well and producing
good results, easily achieving higher results overall than the Center-
line function. The Prototype Function performed better by a small
margin in 2/3 of metrics and tied in 1/3 of metrics when compared
to the Object Avoidance Function, showing that the reinforcement
of the optimal path shows promise. The idea of rewarding good
behavior while simultaneously punishing bad behavior, when ap-
plied to the Head to Bot racing mode, could be the key to creating
a perfect balance of reward assignment in the complex dynamic
environment of the mode. With tweaking of the distance values
and reward values of the reinforcement of optimal path reward in
the Prototype Function, the Prototype Function could exhibit even
greater margins of performance.

ACKNOWLEDGMENTS
This work is supported in part by NSF REU Site grant CNS-2149950.

REFERENCES
[1] Amazon Web Services, Inc. 2023. AWS DeepRacer reward function examples. On-

line at https://docs.aws.amazon.com/deepracer/latest/developerguide/deepracer-
reward-function-examples.html.

[2] Haikuo Du, Moyan Zhu, Wenjie Zhu, Yanbo Liu, Anbei Zhao, Wenchao Xu, Weiqi
Sun, and Chunrun Du. 2022. A Dynamic Collaborative Planning Method for
Multi-vehicles in the Autonomous Driving Platform of the DeepRacer. In 2022 41st
Chinese Control Conference (CCC). 5524–5531. https://doi.org/10.23919/CCC55666.
2022.9902120

[3] Jacob McCalip, Mandil Pradhan, and Kecheng Yang. 2023. Reinforcement Learning
Approaches for Racing and Object Avoidance on AWS DeepRacer. In 2023 IEEE
47th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE,
958–961.

https://docs.aws.amazon.com/deepracer/latest/developerguide/deepracer-reward-function-examples.html
https://docs.aws.amazon.com/deepracer/latest/developerguide/deepracer-reward-function-examples.html
https://doi.org/10.23919/CCC55666.2022.9902120
https://doi.org/10.23919/CCC55666.2022.9902120

	Abstract
	1 Introduction
	1.1 Reinforcement learning
	1.2 Different Modes and Reward Functions
	1.3 Parameters of the Environment

	2 Background
	3 Methodology
	3.1 Testing of Centerline and Object Avoidance Reward Functions
	3.2 Parameter Modifications
	3.3 Evaluation Mode and Metrics
	3.4 Prototype Reward Function

	4 Results
	5 Discussion
	6 Conclusion
	Acknowledgments
	References

