
On the Soft Real-Time Optimality of Global EDF on
Multiprocessors: From Identical to Uniform Heterogeneous ∗

Kecheng Yang and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
Under the definition of soft real-time (SRT) correctness that
requires deadline tardiness to be bounded, both the preemp-
tive and non-preemptive global EDF (GEDF) schedulers
are known to be SRT-optimal on identical multiprocessors.
This paper considers the potential extension of these results
to uniform heterogeneous multiprocessors. In the preemp-
tive case, it is shown that such an extension is possible
for two-processor platforms but unlikely for platforms of
more than two processors, unless fundamentally new proof
techniques are developed. In the non-preemptive case, it is
shown that no work-conserving scheduler, including GEDF,
can be SRT-optimal on uniform multiprocessors, even if the
number of processors is limited to two.

1 Introduction
The advent of multicore technologies has led to significa-
tion recent attention being directed at multiprocessor plat-
forms in the real-time system research community. Perhaps
inspired by the optimality of earliest-deadline-first (EDF)
scheduling on uniprocessors, global EDF (GEDF) schedul-
ing on multiprocessors has continued to receive much inter-
est. Unfortunately, in hard real-time (HRT) systems, where
every deadline must be met, GEDF scheduling is not opti-
mal due to the Dhall Effect [3].

Nonetheless, GEDF scheduling has desirable theoretical
properties under a more general interpretation of the term
real-time system that was suggested by Buttazzo [1]. Under
this interpretation, a real-time system is one that is able

“to provide bounded response times to tasks with
bounded execution, in all possible scenarios. ”

Clearly, meeting all deadlines guarantees bounded response
times. Alternatively, under the definition of soft real-time
(SRT) correctness that requires deadline tardiness1 to be
provably bounded, response times are bounded as well. In
work on GEDF scheduling, this definition of SRT was first
considered by Devi and Anderson [2].

In this paper, we consider the GEDF scheduling of spo-
radic task systems under this definition of SRT correctness.

∗Work supported by NSF grants CNS 1115284, CNS 1218693, CPS
1239135, CNS 1409175, and CPS 1446631, AFOSR grant FA9550-14-1-
0161, ARO grant W911NF-14-1-0499, and a grant from General Motors.

1See Sec. 2 for formal definitions.

We define such a task system as SRT-feasible if for any pat-
tern of task invocations as allowed by the sporadic model,
there exists a schedule that guarantees bounded tardiness
for every task in the system. To illustrate, an overloaded
system is clearly not SRT-feasible. A scheduling algorithm
is SRT-optimal if, for any SRT-feasible system, every task
is guaranteed bounded tardiness under that algorithm. Note
that optimality is defined here with respect to schedulabil-
ity rather than response times. That is, just as HRT-optimal
schedulers (e.g., EDF on uniprocessors) do not necessarily
guarantee minimum response times, SRT-optimal ones also
do not necessarily guarantee minimum deadline tardiness.

Devi and Anderson [2] showed that both the preemptive
and non-preemptive GEDF schedulers are SRT-optimal for
scheduling sporadic tasks on identical multiprocessors. In
this paper, we consider the applicability of these results on
heterogeneous multiprocessors platforms, which have been
the subject of growing attention. As explained more care-
fully later, on a heterogeneous platform, processors can dif-
fer with respect to speed and/or functionality. If processors
can only differ with respect to speed, then the platform is
a uniform platform. Identical multiprocessors are a special
case of uniform ones where all processors happen to have
the same speed. In this paper, we examine and explore the
SRT-optimality of GEDF scheduling when the underlying
platform is extended from an identical one to a uniform het-
erogeneous one.

Related work. Research on EDF scheduling on uniform
heterogeneous multiprocessors was initiated by Funk et al.
They proposed two GEDF-based schedulers, f-EDF (full
migrations) and r-EDF (restricted migrations). See Funk’s
dissertation [6] for details. However, their work only con-
sidered HRT systems, and therefore focused on approxima-
tion ratios and utilization bounds instead of optimality.

Devi and Anderson’s original work on the SRT-
optimality of preemptive and non-preemptive GEDF
scheduling was later extended in several ways, e.g. by tight-
ening the tardiness bounds [5], introducing the broader fam-
ilies of window-constrained schedulers [8] and GEDF-like
(GEL) schedulers [4], and developing the global fair late-
ness scheduler [4], which is a GEL scheduler with better
tardiness bounds than GEDF.

EDF-based SRT scheduling on uniform platforms was
first considered by Leontyev and Anderson [9]. They pre-
sented a scheme wherein the platform is partitioned into



“clusters” of identical processors, where the GEDF sched-
uler is used within each cluster, and some limited task mi-
grations are allowed across clusters. Additionally, EDF-
based SRT semi-partitioned [13] and global [11] schedulers
have been proposed for uniform platforms. Although the al-
gorithms proposed in each of the three just-cited papers are
claimed to entail no total utilization loss—i.e., the task set
utilization can be as high as the platform’s capacity—they
all require some per-task utilization constraints, which com-
promise optimality. For example, the illustrative systems
considered in Secs. 4 and 5 are excluded by the schedu-
lability conditions in each of these papers, yet these sys-
tems are indeed feasible. In recent work, we showed that, if
the sporadic task model is loosened by allowing intra-task
parallelism—i.e., consecutive invocations of the same task
can proceed in parallel—then both the preemptive and non-
preemptive GEDF schedulers are SRT-optimal on uniform
platforms [12]. We have also proposed a semi-partitioned
scheduler that is optimal (either HRT or SRT, depending on
a configuration parameter) when scheduling conventional
sporadic tasks on such platforms [14].

Contributions. We study the GEDF SRT-optimality results
of Devi and Anderson [2] when the platform is extended to
a uniform one. Their results show that, on identical multi-
processors, both the preemptive and non-preemptive GEDF
schedulers are SRT-optimal for an arbitrary number of pro-
cessors. On uniform multiprocessors, we prove that the pre-
emptive GEDF scheduler is SRT-optimal on platforms of
only two processors. Unfortunately, the proof techniques in-
herited from [2] do not easily extend to uniform platforms
of three or more processors, and we explain why. Thus,
we leave the optimality of preemptive GEDF scheduling
on such platforms as an open problem. In the case of non-
preemptive scheduling, we show that no work-conserving
scheduler, including GEDF, can be SRT-optimal on uniform
platforms, even if the number of processors is limited to
two. Finally, inspired by these negative results, we suggest
several avenues for future work. To the best of our knowl-
edge, this is the first paper to consider the SRT-optimality
of GEDF on uniform heterogeneous multiprocessors.

Organization. In the rest of this paper, we provide needed
background (Sec. 2), derive a tardiness bound for the pre-
emptive GEDF scheduler on uniform platforms of two
processors (Sec. 3), discuss difficulties that arise when
seeking a similar result for platforms of more than two
processors (Sec. 4), show that no work-conserving non-
preemptive scheduler can be SRT-optimal on uniform plat-
forms (Sec. 5), and conclude (Sec. 6).

2 Background

According to [6, 10], multiprocessor platforms can be clas-
sified among three heterogeneity levels according to as-
sumptions about processor speeds—the speed of a proces-
sor refers to the amount of work completed in one time unit

when a task is executed on that processor.

• Identical multiprocessors. Every task is executed on
any processor at the same speed, which is usually nor-
malized to be 1.0 for simplicity.

• Uniform heterogeneous multiprocessors. Different
processors may have different speeds, but on a given
processor, every task is executed at the same speed.
The speed of processor p is denoted sp.

• Unrelated heterogeneous multiprocessors. The exe-
cution speed of a task depends on both the processor on
which it is executed and the task itself, i.e., a given pro-
cessor may execute different tasks at different speeds.
The execution speed of task τi on processor p is de-
noted sp,i.

We specify a sporadic task τi by (Ci, Ti), where Ci is
its worst-case execution requirement, which is defined as its
worst-case execution time on a unit-speed processor, and Ti
is its period, or minimum separation between any two con-
secutive invocations of the task. We also assume that the
deadlines are implicit (i.e., the relative deadline of each task
equals its period) and each individual task is sequential (i.e.,
intra-task parallelism is not allowed and each invocation of
a task cannot commence execution until all previous invo-
cations of that task complete). τi’s utilization is defined as

ui =
Ci
Ti
. (1)

Note that, on a heterogeneous platform, ui ≤ 1 does not
necessarily hold. Needed restrictions on utilizations, which
depend on processor speeds, are given later. We consider the
problem of scheduling a task set τ of n, where n ≥ 2, such
tasks on π, i.e., τ = {τ1, τ2, . . . , τn}. We define Cmax =
max1≤i≤n{Ci}, and denote the total utilization of the task
set τ by Uτ =

∑n
i=1 ui. Also, we assume that time is con-

tinuous.
A job is an invocation of a task. The jth job of τi is de-

noted as τi,j and is released at time ri,j with an absolute
deadline di,j = ri,j + Ti. The time interval [ri,j , di,j ] is
called the scheduling window of τi,j . A job is ready if and
only if it is released and all previous jobs of the same task
have already completed. If τi,j completes at time tc, then its
tardiness is defined as max{0, tc− di,j}. The tardiness of a
task is the maximum tardiness of any of its jobs.

In [7], Funk et al. proved that a set of n implicit-deadline
periodic tasks is HRT-feasible on an m-processor uniform
platform with speeds {si}, where 1 ≤ i ≤ m, if and only if

Uτ ≤
m∑
i=1

si, (2)



and ∑
k largest

ui ≤
∑
k largest

si for k = 1, 2, . . . ,m− 1. (3)

In fact, the proof in [7] also shows that (2) and (3) are a
necessary and sufficient feasibility condition (HRT or SRT)
for implicit-deadline sporadic task systems.

Task set instantiation. Since the sporadic task model only
requires a minimum job separation, there are an infinite
number of instantiations, or job release patterns, of a cer-
tain sporadic task, as well as of a certain sporadic task set.
We use T denote an instantiation of the sporadic task set τ .

Ideal schedule. We let πI = {u1, u2, . . . , un} denote an
ideal multiprocessor for the task set τ , where πI consists
of n processors with speeds that exactly match the utiliza-
tions of the n tasks in τ , respectively. Let I be the parti-
tioned schedule for τ on πI , where each task τi in τ is as-
signed to the processor of speed ui. Then, in I, every job
in τ commences execution at its release time and completes
execution within one period (it exactly executes for one pe-
riod if and only if its actual execution requirement matches
its worst-case execution requirement). Thus, all deadlines
are met in I. Also, note that, in I, every job only executes
within its scheduling window.

Definition of lag. Let A(T ,S, τi, t1, t2) denote the cumu-
lative processor capacity allocation to task τi in an arbitrary
schedule S of the instantiation T within the time interval
[t1, t2]. By the definition of the ideal schedule I, for any T ,

A(T , I, τi, t1, t2) ≤ ui · (t2 − t1). (4)

For an arbitrary schedule S of an arbitrary instantiation T ,
we denote the difference between the allocation to a task τi
in I and in S within [0, t) as

lag(T , τi, t,S) = A(T , I, τi, 0, t)− A(T ,S, τi, 0, t). (5)

Thus, we have

lag(T , τi, t2,S) = lag(T , τi, t1,S)+
A(T , I, τi, t1, t2)− A(T ,S, τi, t1, t2). (6)

Also, we define

LAG(T , τ, t,S) =
∑
τi∈τ

lag(T , τi, t,S). (7)

3 Preemptive GEDF on Two Processors

In this section, we prove that under preemptive GEDF
scheduling, for any feasible task set on a two-processor uni-
form platform, every job has a bounded tardiness, i.e., pre-
emptive GEDF is SRT-optimal on dual-core uniform hetero-
geneous multiprocessors.

Considered platform. We consider a uniform dual-core
multiprocessor π, where the higher-speed (lower-speed)
core is denoted by its speed sh (sl), i.e., π = {sh, sl} where
sh ≥ sl. By (2) and (3), the feasibility conditions on the
dual-core uniform platform π reduce to

Uτ ≤ sh + sl, (8)

and
ui ≤ sh for any i. (9)

Preemptive GEDF. The preemptive GEDF scheduling al-
gorithm on π is defined as follows. For any time instant, the
ready but incomplete job with the earliest deadline (the sec-
ond earliest deadline) is scheduled on sh (sl) if there is at
least one (two) ready but incomplete job(s). Deadline ties
are broken arbitrarily. In the rest of this section, we use S
to denote the preemptive GEDF schedule for an arbitrary
instantiation T of a sporadic task set τ that is feasible on π.

A key property of preemptive GEDF scheduling is that,
for any job, its execution does not depend on any jobs with
a later deadline. We will use this property multiple times in
the proof in this section.

We define the deadline of a task as the deadline of its
most recently ready job, i.e., the deadline of a task τi at
time instant t is defined as di(t) = di,j , where τi,j is the
most recently ready job of τi. Note that the most recently
ready job is not necessary to be the most recently released
job. For example, if τi,j+1 is released at time t, but τi,j has
not completed by time t, then τi,j+1 is not considered to be
ready at time t. Then, assuming τi,j is ready at time t, the
most recently ready job of τi at time t should be τi,j rather
than τi,j+1.

If Uτ ≤ sh, then it is clear that every job will meet its
deadline and therefore has zero tardiness. This is because by
the optimality of EDF on uniprocessors, all deadlines will
be met if we only schedule jobs on sh. Furthermore, com-
pared to this uniprocessor schedule, the GEDF scheduling
described above does not delay any execution of any job.
Thus, in the rest of this section, we focus on the other case,
i.e., sh < Uτ ≤ sh + sl.

We define a time instant as busy if and only if at that time
instant both sh and sl are executing a job, and non-busy
otherwise. We define a time interval to be a busy interval
(non-busy interval) if and only if every time instant in this
interval is a busy (non-busy) time instant. A busy interval
(t1, t2] has the following property.

Lemma 1. For any busy interval (t1, t2],

LAG(T , τ, t1,S) ≥ LAG(T , τ, t2,S).

Proof. Since (t1, t2] is a busy interval,∑
τi∈τ

A(T ,S, τi, t1, t2) = (sh + sl) · (t2 − t1). (10)



By (4), ∑
τi∈τ

A(T , I, τi, t1, t2) ≤
∑
τi∈τ

ui · (t2 − t1)

= Uτ · (t2 − t1). (11)

Thus,

LAG(T , τ, t2,S)
= {by (7)}∑

τi∈τ
lag(T , τi, t2,S)

= {by (6)}∑
τi∈τ

(
lag(T , τi, t1,S)+

A(T , I, τi, t1, t2)− A(T ,S, τi, t1, t2)
)

= {by (7)}

LAG(T , τ, t1,S) +
∑
τi∈τ

A(T , I, τi, t1, t2)−∑
τi∈τ

A(T ,S, τi, t1, t2)

≤ {by (10) and (11)}
LAG(T , τ, t1,S) +

(
Uτ − (sh + sl)

)
·(t2 − t1)

≤ {by (8) and t1 ≤ t2}
LAG(T , τ, t1,S).

The lemma follows.

Lemma 2. If at time instant t, both sh and sl are idle, then
LAG(T , τ, t,S) ≤ 0.

Proof. If LAG(T , τ, t,S) > 0, then by (7), there exists a
task τi such that lag(T , τi, t,S) > 0. By the definition of
lag and the ideal schedule I, this implies that, at time t,
τi has a job that is ready and incomplete. Thus, if there is
an idle processor, τi should be scheduled, which contradicts
the assumption that both sh and sl are idle at time t.

Lemma 3. At time instant t, for any task τi, if t ≤ di(t),
then lag(T , τi, t,S) ≤ Ci.

Proof. Suppose τi,r is the most recently ready job of τi in S
at time t. Then t ≤ di(t) = di,r. Let ei,j denote the actual
execution requirement of τi,j . Then by the definition of Ci,
ei,j ≤ Ci for any j. Since τi,r is ready in S at time t, τi,r−1
must complete by t. That is,

A(T ,S, τi, 0, t) ≥
r−1∑
j=1

ei,j . (12)

Also, by the definition of I and since t ≤ di,r,

A(T , I, τi, 0, t) ≤
r∑
j=1

ei,j . (13)

Thus, by (5),

lag(T , τi, t,S) ≤
r∑
j=1

ei,j −
r−1∑
j=1

ei,j

= ei,r

≤ Ci.

The lemma follows.

Lemma 4. Suppose an arbitrary task τi has completed
its most recently ready job at time instant t. Then,
lag(T , τi, t,S) ≤ 0 if t ≤ di(t); lag(T , τi, t,S) = 0 if
t > di(t).

Proof. Suppose τi,r is the most recently ready job of τi in S
at time t. Then t ≤ di(t) = di,r. Let ei,j denote the actual
execution requirement of τi,j . Then by the definition of Ci,
ei,j ≤ Ci for any j.

Since τi has completed its most recently ready job τi,r
by time t,

A(T ,S, τi, 0, t) =
r∑
j=1

ei,j . (14)

Also, by the definition of I,

A(T , I, τi, 0, di,r) =
r∑
j=1

ei,j . (15)

Case 1: t ≤ di,r. By the definition of I,

A(T , I, τi, 0, t) ≤ A(T , I, τi, 0, di,r). (16)

By (5), (14), (15), and (16), lag(T , τi, t,S) ≤ 0.

Case 2: t > di,r. Since τi,r is its the most recently ready
job, τi does not release any job in the time interval [di,r, t].
Thus, by the definition of I, A(T , I, τi, di,r, t) = 0, i.e.,

A(T , I, τi, 0, t) = A(T , I, τi, 0, di,r). (17)

By (5), (14), (15), and (17), lag(T , τi, t,S) = 0.
By combining Cases 1 and 2, the lemma follows.

Lemma 5. For any t ≥ 0, for any instantiation T of the
sporadic task set τ , LAG(T , τ, t,S) is at most Cmax.

Proof. We prove this lemma by induction.

Base case. It is clear that, when t = 0, for any instantiation
T of the sporadic task set τ , LAG(T , τ, 0,S) = 0. Thus, the
lemma follows for t = 0.

Inductive step. For an arbitrary time instant t > 0, suppose
that for any time instant t′ < t the lemma follows. We prove



the lemma follows for t as well.

Case 1: t is a busy instant. Let tn denote the latest non-
busy time instant before t if such an time instant exists, oth-
erwise, let tn = 0. Then, tn < t and (tn, t] is a busy interval.
By Lem. 1,

LAG(T , τ, tn,S) ≥ LAG(T , τ, t,S) (18)

Since tn < t, by the inductive assumption,

LAG(T , τ, tn,S) ≤ Cmax (19)

By (18) and (19), LAG(T , τ, t,S) ≤ Cmax.

Case 2: t is a non-busy instant. If both sh and sl are idle at
time t, then by Lem. 2, LAG(T , τ, t,S) ≤ 0 < Cmax. Since
t is non-busy and the preemptive GEDF scheduler prefers
sh over sl, the remaining possibility to consider is that, at
time t, some task τk executes on sh and sl is idle. Note
that, any task other than τk must have completed its most
recently ready job at time t; otherwise, such task would also
be scheduled at time t, which contradicts the assumption
that t is non-busy. Thus, by Lem. 4,

lag(T , τi, t,S) ≤ 0, for any i 6= k. (20)

Let τk,r denote the most recently ready job of τk at time
t, i.e., dk(t) = dk,r. Also, let td = dk(t) = dk,r for nota-
tional simplicity.

Case 2.1: t ≤ td. By Lem. 3, lag(T , τk, t,S) ≤ Ck ≤
Cmax. Thus, by (20) and (7), LAG(T , τ, t,S) ≤ Cmax.

Case 2.2: t > td. In this case, we consider an instantia-
tion T ′, which is identical to T except that, all jobs of tasks
other than τk that have a deadline after td and have com-
pleted before t are dropped (or equivalently, are never re-
leased). Fig.1(a) is an illustrates this situation. Note that, by
the definition of sporadic tasks, T ′ is also an instantiation of
the sporadic task set τ . Let S ′ denote the preemptive GEDF
schedule of T ′. Thus, by the inductive assumption, apply-
ing this lemma to T ′ (since the lemma is with respect to any
instantiation of τ ),

LAG(T ′, τ, t′,S ′) ≤ Cmax, for any t′ < t. (21)

In T ′, compared with T , we did not change the releases
of τk, and under the GEDF scheduling, τk’s execution until
t only depends on the execution of jobs with a deadline at or
before td. The set of such jobs is not impacted by dropping
jobs with a deadline after td. Therefore, until t, the schedul-
ing of τk is identical in both T and T ′, i.e.,

lag(T , τk, t,S) = lag(T ′, τk, t,S ′). (22)

Also, for any task τi other than τk, it is clear that such
job dropping does not change the fact that τi has completed
its most recently ready job at time t (note that, in T or T ′,
“most recently ready job at time t” may refer to different

jobs, since in T ′ some jobs in T may be never released).
The only impact to τi is that, in T ′, di(t) ≤ td for any
i 6= k. Since in this subcase (Case 2.2) t > td, we have
di(t) < t for any i 6= k as well. Thus, by Lem. 4,

lag(T ′, τi, t,S ′) = 0, for any i 6= k, (23)

which implies, by (20) and (23),

lag(T , τi, t,S) ≤ lag(T ′, τi, t,S ′), for any i 6= k. (24)

Thus, by (7), (22), and (24), we have

LAG(T , τ, t,S) ≤ LAG(T ′, τ, t,S ′). (25)

That is, it is sufficient to show LAG(T ′, τ, t,S ′) ≤ Cmax.
We first prove the following preliminary Claim.

Claim 1. If a task τk is continuously executing
throughout a non-busy interval (t1, t2] and no any
other task has a job with a scheduling window that
overlaps with (t1, t2], then for any instantiation T ,
LAG(T , τ, t1,S) ≥ LAG(T , τ, t2,S).

Proof. Since τi is continuously executing through-
out the time interval (t1, t2],

A(T ,S, τk, t1, t2) = sh · (t2 − t1), (26)

and since any time instant within [t1, t2] is non-
busy,

A(T ,S, τi, t1, t2) = 0, for any i 6= k. (27)

Since no any other task has a job with a schedul-
ing window that overlaps with [t1, t2],

A(T , I, τi, t1, t2) = 0, for any i 6= k. (28)

Also, by (4),

A(T , I, τk, t1, t2) ≤ uk · (t2 − t1), (29)

By (6), (7), (26), (27), (28), and (29),

LAG(T , τ, t2,S) = LAG(T , τ, t1,S)
+ (uk − sh) · (t2 − t1)

≤ {by (9) and since t1 ≤ t2}
LAG(T , τ, t1,S).

The claim follows.

Let tb denote the latest busy time instant before time t if
such an instant exists, otherwise, let tb = 0. tb is well-
defined such that tb < t, because by the condition of Case
2, t is non-busy.



Case 2.2.1: tb ≤ td. That is, (td, t] is a non-busy interval,
and therefore τk is continuously executing on sh within this
non-busy interval, as shown in Fig.1(b). Moreover, in T ′,
di(t) ≤ td for any i 6= k, so no task other than τk has a job
with a scheduling window that overlaps with (td, t]. Thus,
by Claim 1,

LAG(T ′, τ, t,S ′) ≤ LAG(T ′, τ, td,S ′). (30)

Since td < t (the condition of Case 2.2), by (21),

LAG(T ′, τ, td,S ′) ≤ Cmax. (31)

Thus, by (25), (30),and (31), LAG(T , τ, t,S) ≤ Cmax.
Case 2.2.2: tb > td. That is, (tb, t] is a non-busy interval,
and therefore τk is continuously executing on sh within this
non-busy interval, as shown in Fig.1(c). Moreover, in T ′,
di(t) ≤ td ≤ tb for any i 6= k, so no task other than τk has
a job with a scheduling window that overlaps with (tb, tn].
Thus, by Claim 1,

LAG(T ′, τ, t,S ′) ≤ LAG(T ′, τ, tb,S ′). (32)

Since tb < t (by the definition of tb), by (21),

LAG(T ′, τ, tb,S ′) ≤ Cmax. (33)

Thus, by (25), (32),and (33), LAG(T , τ, t,S) ≤ Cmax.
Conclusion. The cases above are exhaustive, and in all
cases, we have LAG(T , τ, t,S) ≤ Cmax. That is, we have
proved the inductive step, i.e., for a certain time instant
t > 0, assuming that LAG(T , τ, t′,S) ≤ Cmax for any time
instant t′ < t for any instantiation of τ , we have proved that
LAG(T , τ, t,S) ≤ Cmax for any instantiation of τ . Thus,
combining the base case at the beginning of the proof, the
lemma follows by induction.

Theorem 1. Under preemptive GEDF scheduling, for any
feasible sporadic task set τ on π, every job has a tardiness
at most Cmax/sh.
Proof. Let τi,j denote an arbitrary job in an arbitrary instan-
tiation T of τ , and let td denote the absolute deadline of τi,j ,
i.e., td = di,j . We prove that τi,j completes its execution by
td + Cmax/sh.

For any instantiation of τ , since no job with a deadline at
or before td could be released after td, the following prop-
erty holds for any instantiation of τ under preemptive GEDF
scheduling.

(P1) Once τi,j is scheduled on sh at or after td, it
continuously executes on sh until it completes.

Also, for any instantiation T , we can consider an instan-
tiation T ′, which is identical to T except that, all jobs with
a deadline after td are dropped (or equivalently, never re-
leased). Note that T ′ is also a valid instantiation of the spo-
radic task set τ . Also, let S ′ denote the preemptive GEDF
schedule for T ′ on π. Then, the following claim holds.

sh

sl

busybusy
¿k;r

¿a;b ¿v;w

td=dk;r da;b dv;w t

dropped in T 0

¿k;r’s
predecessors

(a) Illustration for Case 2.2: constructing T ′ and S′ from S.

sh

sl

busy
¿k;r

td=dk;r ttb

busy

¿k;r’s
predecessors

(b) Illustration for Case 2.2.1: schedule S′.

sh

sl

busy
¿k;r

td=dk;r ttb

busy

¿k;r’s
predecessors

(c) Illustration for Case 2.2.2: schedule S′.

Figure 1: Illustrative schedules for Lem. 5.

Claim 2. The tardiness of τi,j in S ′ is identical to
that in S.

Proof. In both S and S ′, τi,j’s execution only de-
pends on the execution of jobs with a deadline at
or before td, so its execution is not impacted by
dropping jobs with a deadline after td. Therefore,
the claim follows.

By Claim 2, in the rest of this proof, it is sufficient to
consider the instantiation T ′ instead, and to upper bound
τi,j’s tardiness in S ′. Since in T ′ all jobs with a deadline
after td are dropped, we have the following properties for
T ′.

(P2) After td, once π becomes non-busy, it will
be continually non-busy afterwards.

(P3) At td, the remaining work for T ′ (if any),
including the remaining work for τi,j , is upper
bounded by LAG(T ′, τ, td,S ′).



We inductively assume τi,j’s predecessor jobs have tar-
diness at most Cmax/sh, and then prove τi,j has tardiness
at most Cmax/sh as well. For τi,1, which has no actual pre-
decessor, we define a “virtual predecessor” τi,0, which has
a deadline at time zero and zero tardiness and which yields
the base case of the induction. This enables us to avoid dis-
tracting boundary cases.

By this inductive assumption, any jobs with a deadline
earlier than td have tardiness at most Cmax/sh, and by the
definition of the period of a task, τi,j−1 has a deadline at
most td−Ti. Therefore, τi,j−1 must complete by td−Ti+
Cmax/sh. Moreover, τi,j is released at td − Ti. Thus, the
following property holds.

(P4) τi,j is ready by td − Ti + Cmax/sh.

Let tb denote the latest busy time instant after td if such
an instant exists, otherwise, let tb = td. Then, by (P2),
(td, tb] must be a busy interval, in which the amount of work
that is done is (sh + sl) · (tb − td).
Case 1: tb ≤ td − Ti + Cmax/sh. In this case, by
(P1), (P2), and (P4), τi,j either has completed by time
td − Ti + Cmax/sh, or continually executes on sh after
time td − Ti + Cmax/sh and thus must complete within
Ci/sh time units. That is, τi,j must complete by time
td − Ti + Cmax/sh + Ci/sh. By (1) and (9), Ci/sh ≤ Ti.
Thus, τi,j must complete by time td + Cmax/sh.

Case 2: tb > td−Ti+Cmax/sh. In this case, (P4) implies
that τi,j is ready by time tb as well. Then, by (P1) and (P2),
τi,j either has completed by time tb, or continually exe-
cutes on sh after time tb. Let δ denote the remaining ex-
ecution requirement of τi,j that has not completed at time
tb. Then, τi,j must complete within δ/sh time units, i.e.,
by time tb + δ/sh. Moreover, no task other than τi would
have remaining work after time tb, otherwise tb would not
be the latest busy time instant. Therefore, by (P3), we have
(sh + sl) · (tb − td) + δ ≤ LAG(T ′, τ, td,S ′). That is,
tb ≤ td +

(
LAG(T ′, τ, td,S ′)− δ

)
/(sh + sl). Thus,

tb +
δ

sh
≤ td +

LAG(T ′, τ, td,S ′)− δ
sh + sl

+
δ

sh
= {rearranging}

td +
LAG(T ′, τ, td,S ′)

sh + sl
+ δ ·

(
1

sh
− 1

sh + sl

)
≤ {by Lem. 5}

td +
Cmax
sh + sl

+ δ ·
(

1

sh
− 1

sh + sl

)
≤ {since δ ≤ Ci}

td +
Cmax
sh + sl

+ Ci ·
(

1

sh
− 1

sh + sl

)
≤ {since Ci ≤ Cmax, and simplifying}

td +
Cmax
sh

.

That is, τi,j completes by td + Cmax/sh.
Combining Cases 1 and 2, we have proved that an arbi-

trary job τi,j has a tardiness at most Cmax/sh. Thus, the
theorem follows.

Corollary 1. Under preemptive GEDF scheduling on two
identical processors, every job has a tardiness at mostCmax.

Proof. By setting sh = sl = 1.0, the corollary follows from
Thm. 1

Corollary 1 exactly matches a result proven in [2] for two
processors.

4 Preemptive GEDF on m Processors
In Sec. 3, we proved that the preemptive GEDF scheduler is
SRT-optimal on two-processor uniform platforms. Unfortu-
nately, the proof techniques inherited from [2] are unlikely
to apply to larger uniform platforms. This is because the sit-
uation for tardy tasks in a non-busy interval has changed.

The main technique in both Sec. 3 and [2] is to consider
the schedule by busy intervals and non-busy intervals. The
intuition behind this technique is that, throughout a busy
interval, the set of all tasks, or the total system, is not be-
coming more tardy, whereas throughout a non-busy inter-
val, any tardy task is not becoming more tardy. Moreover,
any schedule can be split into sub-intervals that are either
busy or non-busy.

Such intuition for busy intervals holds for uniform plat-
form with an arbitrary number of processors, since, to be
feasible, the system should not be overutilized. However,
the intuition for non-busy intervals depends on the number
of processors for uniform platforms. Let us say that a pro-
cessor is fast enough for a task if the speed of the processor
is at least the utilization of the task. Then, a task scheduled
on a fast enough processor will not become more tardy. For
any uniform platform, including identical multiprocessors,
the following property holds: at any non-busy time instant,
every tardy task is scheduled; otherwise, the scheduler is not
work-conserving, which is a property of GEDF. On identi-
cal multiprocessors, every processor is fast enough for any
task in a feasible system. Therefore, at any non-busy time
instant, as every tardy task is scheduled, it is also not be-
coming more tardy. On two-processor uniform platforms,
the faster processor is fast enough for any task in a feasible
system, and a non-busy time instant implies that at that time
instant at most one task is tardy, which should be sched-
uled on the faster processor and therefore is not becoming
more tardy. Thus, the intuition for non-busy intervals holds
for identical multiprocessors also holds for two-processor
uniform platforms.

Nevertheless, this intuition for non-busy intervals may
not hold for larger uniform platforms. Consider a three-
processor uniform platform π = {5, 2, 2} on which three
tasks with utilizations u1 = u2 = u3 = 3 are to be sched-
uled. By (2) and (3), this system is feasible. However, it
could be the case that at a non-busy time instant, a tardy task



s1 = 5

bus

y

work with deadline 

at or before td

¿i;j

¿i;j

idle

non-busy interval

Suppose ui = 3, ¿i;j may

execute for more than Ti

s2 = 2

s3 = 2

Figure 2: On a uniform platform of more than three processors, a
job of a task could continuously execute for more than its period
within a non-busy interval.

is scheduled on a processor with speed of 2 because another
more tardy one is scheduled on the processor with speed
5. Thus, at a non-busy time instant, a tardy task could be
scheduled on a processor that is not fast enough, and hence
the tardy task could become more tardy.

Technically, the impact of this difference is that Thm. 1,
or more specifically Case 1 in the proof of Thm. 1, does not
hold anymore. That part of the proof relies on the condi-
tion Ci/sh ≤ Ti, which actually expresses that sh is fast
enough for any task. However, on larger uniform platforms,
the equivalent condition becomes Ci/sp ≤ Ti, where sp
could be any processor other than the slowest one (since a
non-busy interval is under consideration). It is not guaran-
teed that sp is fast enough for an arbitrary task τi. That is,
if a job continuously executes in a non-busy interval, then
it is no longer nessarily the case that this job will complete
within one period, since it could be scheduled on a proces-
sor with a speed that is less than the utilization of the corre-
sponding task. Fig. 2 illustrates this situation.

Of course, we could constrain the per-task utilizations to
satisfy some conditions to ensure every task must execute
on a fast enough processor, as [9] [13] [11] did. However,
such restrictions would compromise optimality.

In conclusion, establishing the optimality of preemptive
GEDF on more than three uniform processors is unlikely
using the techniques in Sec. 3 and [2]. Unfortunately, we
could not devise a counterexample to show that preemptive
GEDF is not SRT-optimal on more than two uniform pro-
cessors. Thus, whether preemptive GEDF is SRT-optimal
on larger uniform platforms remains as an open problem.

5 Non-Preemptive Scheduling
Devi and Anderson [2] proved that both the preemptive and
non-preemptive GEDF schedulers are SRT-optimal on iden-
tical multiprocessors. In Sec. 3, we proved that the preemp-
tive GEDF scheduler is SRT-optimal on two-processor uni-
form platforms, and the proof is consistent with the proof of
the SRT-optimality of GEDF on identical multiprocessors
in [2]. Thus, we might intuitively speculate that the non-
preemptive GEDF scheduler is SRT-optimal, at least on two
uniform processors. Unfortunately, this is not true.

A non-preemptive scheduler schedules ready jobs, and
once a job is scheduled, it continually executes without pre-
emption until it completes. In this paper, we further require
that under non-preemptive scheduling, once a job is sched-
uled, it continually executes on the processor on which it
was scheduled without preemption until it completes, i.e.,
non-preemptivity means no preemption and no migration
occurs within a single job. This implicitly holds for any non-
preemptive scheduler on identical multiprocessors, where
every processor is the same and therefore there is no point
to migrating a job that is currently executing; however, we
do have to clarify this here, since the processors in a uniform
platform could be of different speeds.

In this section, we prove that non-preemptive GEDF is
not SRT-optimal on uniform platforms by proving that no
work-conserving non-preemptive scheduler is SRT-optimal
on uniform platforms by giving a counterexample. A work-
conserving scheduler prevents the situation where there is at
least one processor that is idle, and at least one task that has
a incomplete ready job but is not scheduled, i.e., whenever a
task could be scheduled somewhere, it is scheduled. GEDF
is clearly a work-conserving scheduler.

The counterexample. We consider a two-processor uni-
form platform π = {sh = 3, sl = 1} and a task set of
two tasks, τ1 = (4, 2) and τ2 = (4, 2), to be scheduled on
π. Also, we consider the situation where τ1 releases its first
job at time 0 and then releases jobs as soon as possible, and
τ2 releases its first job at time 1 and then releases jobs as
soon as possible. Furthermore, we assume every job has an
execution requirement that matches its worst-case execution
requirement.

At time 0, τ1,1 is released, a work-conserving scheduler
must schedule it on either sh or sl.

Case 1: τ1,1 is scheduled on sh (Fig. 3(a)). Then, τ1,1 con-
tinuously executes on sh until time 1.33. Therefore, at time
1 when τ2,1 is released, sl and only sl is available. Thus, a
work-conserving scheduler must schedule τ2,1 on sl, where
τ2,1 continuously executes until time 5, which means both
τ1,2 (released at time 2) and τ1,3 (released at time 4) must be
scheduled on sh and each of them continuously executes on
sh for 1.33 time units. Thus, at time 5 when τ2,1 completes
and τ2,2 is ready, sl and only sl is available, which means
that a work-conserving scheduler must scheduler τ2,2 on sl
where τ2,2 continuously executes until time 9. This pattern



0

sh=3

sl=1

Schedule

Repeats

time 2 4 6 8 10

¿1,1 ¿1,2 ¿1,3 ¿1,4 ¿1,5

¿2,1 ¿2,2 ¿2,3

(a) Case 1.

Schedule

Repeats

0

sh=3

sl=1

time 2 4 6 8 10

¿1,1 ¿1,2 ¿1,3

¿2,1 ¿2,2 ¿2,3 ¿2,4 ¿2,5

(b) Case 2.

Figure 3: Counterexample schedules.

repeats in the schedule. Fig. 3(a) shows the schedule. Ob-
serve that τ2 is always scheduled on sl and therefore be-
comes unboundedly tardy.

Case 2: τ1,1 is scheduled on sl (Fig. 3(b)). Then, τ1,1 con-
tinuously executes on sh until time 4, which means both τ2,1
(released at time 1) and τ2,2 (released at time 3) must be
scheduled on sh and each of them continuously executes on
sh for 1.33 time units. Thus, at time 4 when τ1,1 completes
and τ1,2 is ready, sl and only sl is available, which means
that a work-conserving scheduler must scheduler τ1,2 on sl
where τ1,2 continuously executes until time 8. This pattern
repeats in the schedule. Fig. 3(b) shows the schedule. Ob-
serve that τ1 is always scheduled on sl and therefore be-
comes unboundedly tardy.

Thus, in this system, under any work-conserving non-
preemptive scheduler, there must be one task that has un-
bounded tardiness. However, by (2) and (3), this system is
actually feasible. Fig. 4 shows a feasible schedule for this
system where all deadlines are met.

In this counterexample, each task releases subsequent
jobs as soon as possible, so it is valid not only for sporadic
tasks, but also for periodic tasks where the two tasks have
phases 0 and 1, respectively. Also, the two-processor uni-
form platform considered in this section is a special case
for the more general uniform platform where the number of
processors is arbitrary. Thus, the following theorem holds.

Theorem 2. No work-conserving non-preemptive sched-
uler is SRT-optimal for sequential sporadic or periodic tasks

Schedule

Repeats

0

sh=3

sl=1

time 2 4 6 8 10

¿1,1

¿1,1

¿2,3

¿2,1

¿1,2

¿1,2

¿2,2

¿2,2

¿1,3

¿1,3

¿2,1

¿2,3

¿1,4

¿1,4

¿2,4

¿2,4

¿1,5

¿1,5 ¿2,5

Figure 4: Feasible schedule.

on uniform heterogeneous multiprocessors, even if the num-
ber of processors is restricted to two.

One might wonder whether if this system with this job
release pattern is SRT-feasible under the non-preemptive re-
striction, i.e., under non-preemptive scheduling, whether it
is possible to have bounded tardiness for every task in this
system. In fact, this system with this job release pattern is
indeed SRT-feasible for non-preemptive scheduling. For ex-
ample, Fig. 5 is a non-preemptive schedule for this system,
and deadline tardiness is at most 3 time units.

The key in the schedule in Fig. 5 is that it is not work-
conserving. At time 4, τ1,3 is ready and sh is idle, but in
this schedule τ1,3 is not scheduled until time 5. At time 5,
when τ2,1 has completed on sl, we schedule τ2,2 on sh, and
schedule τ1,3 on sl. Then, the schedule can be repeated in a
way that the two tasks are scheduled on the faster processor
in turn. As shown in Fig. 5, the maximum tardiness of τ1 is
3 time units (τ1,3, τ1,7, ...); the maximum tardiness of τ2 is
2 time units (τ2,1, τ2,5, τ2,9,...).

This suggests that, to achieve SRT-optimality on uniform
heterogeneous multiprocessors by a non-preemptive sched-
uler, a non-work-conserving mechanism is needed.

Furthermore, for some other instantiation (or release pat-
tern) of this task set τ , a different non-preemptive schedule
may be needed. Thus, another interesting question arises
that whether clairvoyance is necessary to obtain optimal
non-preemptive schedulers. We defer further study on this
to future work.

6 Conclusion
Motivated by the fact that both the preemptive and non-
preemptive GEDF schedulers are known to be SRT-
optimal on identical multiprocessors, we studied these
optimality results while extending the underlying plat-
form from being identical to being uniform. We proved
that the SRT-optimality of preemptive GEDF is preserved
on two-processor uniform platforms, but the question of
SRT-optimality of preemptive GEDF remains open for
larger platforms. On the other hand, we showed that no
work-conserving non-preemptive scheduler, including non-
preemptive GEDF, can be SRT-optimal on uniform plat-
forms, even if the number of processors is limited to two.



0

sh=3

sl=1

Schedule

Repeats

time 2 4 6 8 10

¿1,1 ¿1,2 ¿2,2 ¿2,3 ¿2,4

¿2,1 ¿1,3 ¿2,5

¿1,4 ¿1,5 ¿1,6

¿1,7

¿2,6 ¿2,7 ¿2,8

¿2,9

¿1,8 ¿1,9 ¿1,10

12 14 16 18 20

¿1,3 is ready and sh is idle, but ¿1,3 is not scheduled on sh. 

Not work-conserving!

Figure 5: A non-preemptive schedule for the system in Sec. 5. Note that the deadline tardiness is upper bounded by 3 time units.

Future work. Directly from the discussion in Sec. 4 and
the negative results in Sec. 5, there are two open problems
we would like to address. First, we would like to prove or
disprove the SRT-optimality of preemptive GEDF on more
than three uniform processors. Perhaps new proof tech-
niques and frameworks are needed to handle the situation of
being scheduled on “not fast enough” processors. Second,
we would like to develop non-work-conserving schemes
and design a non-preemptive scheduling algorithm that is
SRT-optimal on uniform platforms.

References
[1] G. Buttazzo. Real-time systems: Achievements and perspectives.

Award Speech in 35th RTSS, 2014. Slides: http://2014.rtss.org/wp-
content/uploads/2014/12/Buttazzo-award-talk-RTSS14.pdf.

[2] U. Devi and J. Anderson. Tardiness bounds for global EDF schedul-
ing on a multiprocessor. In 26th RTSS, 2005.

[3] S. Dhall and C. Liu. On a real-time scheduling problem. Operations
research, 26(1):127–140, 1978.

[4] J. Erickson and J. Anderson. Fair lateness scheduling: Reducing
maximum lateness in G-EDF-like scheduling. In 24th ECRTS, 2012.

[5] J. Erickson, U. Devi, and S. Baruah. Improved tardiness bounds for
global EDF. In 22nd ECRTS, 2010.

[6] S. Funk. EDF Scheduling on Heterogeneous Multiprocessors. PhD
thesis, University of North Carolina, Chapel Hill, NC, 2004.

[7] S. Funk, J. Goossens, and S. Baruah. On-line scheduling on uniform
multiprocessors. In 22nd RTSS, 2001.

[8] H. Leontyev and J. Anderson. Generalized tardiness bounds for
global multiprocessor scheduling. In 28th RTSS, 2007.

[9] H. Leontyev and J. Anderson. Tardiness bounds for EDF scheduling
on multi-speed multicore platforms. In 13th RTCSA, 2007.

[10] M. Pinedo. Scheduling, Theory, Algorithms, and Systems. Prentice
Hall, 1995.

[11] G. Tong and C. Liu. Supporting soft real-time sporadic task sys-
tems on heterogeneous multiprocessors with no uilitzation loss. IEEE
Transactions on Parallel and Distributed Systems, to appear, 2015.

[12] K. Yang and J. Anderson. Optimal GEDF-based schedulers that al-
low intra-task parallelism on heterogeneous multiprocessors. In 12th
ESTIMedia, 2014.

[13] K. Yang and J. Anderson. Soft real-time semi-partitioned schedul-
ing with restricted migrations on uniform heterogeneous multipro-
cessors. In 22nd RTNS, 2014.

[14] K. Yang and J. Anderson. An optimal semi-partitioned scheduler for
uniform heterogeneous multiprocessors. In 27th ECRTS, 2015.


