
Precise Scheduling of Mixed-Criticality Tasks by Varying
Processor Speed

Ashikahmed Bhuiyan∗
University of Central Florida

Zhishan Guo
University of Central Florida

Sai Sruti
Missouri University of Science & Technology

Kecheng Yang
Texas State University

ABSTRACT
In this paper, we extend the imprecise mixed-criticality (IMC) model
to precise scheduling of tasks. We also integrate the IMC model
with the dynamic voltage and frequency scaling (DVFS) technique
to enable energy minimization. The challenge in precise scheduling
of MC systems is to guarantee the timing correctness all tasks under
both pessimistic and optimistic assumptions simultaneously. To our
knowledge, this is the first work to address the integration of DVFS
energy-conserving techniques with precise scheduling of all tasks
of the MC model. We present utilization based schedulability tests
and sufficient conditions for such systems under two well-known
MC frameworks, EDF-VD and MCF. A quantitative study in the
forms of speedup bound and approximation ratio are derived for
the unified model. Empirical studies based on randomly generated
sets are conducted to verify the theoretical results as well as the
effectiveness of the proposed algorithms.

CCS CONCEPTS
• Computer systems organization→ Real-time system architec-
ture.

KEYWORDS
precise scheduling,mixed-criticality, varying-speed platform, speedup
bound, approximation ratio.

ACM Reference Format:
Ashikahmed Bhuiyan∗, Zhishan Guo, Sai Sruti, and Kecheng Yang. 2018.
Precise Scheduling of Mixed-Criticality Tasks by Varying Processor Speed.
In Woodstock ’18: ACM Symposium on Neural Gaze Detection, June 03–05,
2018, Woodstock, NY. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/1122445.1122456

1 INTRODUCTION
There has been an exponential rise in the study of essential security
systems with mixed-criticality implementation. Here, components

∗Authors are alphabetically ordered by last names. Contact author Zhishan Guo:
zsguo@ucf.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

assigned different levels of criticality are facilitated onto a com-
mon framework to enable minimization of energy and reduction
of resource costs. The real-time systems community has exten-
sively followed the model for representing such mixed-criticality
workloads proposed by Vestal [32] over a decade ago. There have
been multiple extensions of this model analyzing the aspects of
scheduling and schedulability conditions under various platforms.
These scheduling strategies are centered around: (i) guaranteeing
resources to all the tasks under less pessimistic behaviors of the sys-
tem and (ii) protecting more important (hi-criticality) tasks under
more pessimistic behaviors, e.g., in the event of task overrun.

State-of-the art.Most of the current and existing literature focuses
on the real-time facet of MC systems, adopts a popular workload
model to specify these systems. The system starts in the normal
mode where all the tasks are guaranteed execution w.r.t their less
pessimistic worst-case execution times (WCET). However, in case of
a task overrun, i.e., if a task of great importance exceeds its normal
budget ofWCETwithout signaling completion, the system switches
to hi-criticality mode. In that case (i.e., task overrun), the more crit-
ical tasks are guaranteed execution while no guarantees are made
to the less critical ones [3, 8]. Sometimes in hi-criticality mode,
degraded services are provided to the less critical tasks, and the
released resources are used to guarantee to meet hi-criticality task
deadlines [11, 21]. More recently, the imprecise mixed-criticality
system (IMC) model is being studied, which allows graceful degra-
dation of lo-criticality tasks in hi-criticality mode [4, 11, 27]. IMC
model embraces the concept of imprecise computing, i.e., upon
mode-switch, each individual lo-criticality task can execute with
inaccuracy in computing. Such allowance results in relatively short
worst-case execution time (WCET), thus saving resources for the
more critical tasks.

Varying-speed processor: context and motivation. To date, a
significant amount of research [7, 8, 22, 28] in mixed criticality sys-
tems has focused on the changing speeds of platforms on which MC
systems are executed. For example, unpredictability and varying
the speed of Commercial-Off-The-Shelf (COTS) processors during
runtime [8] or intentionally varying the frequency of the processor
to minimize energy. Mixed-criticality systems typically run on the
battery-operated platforms with an increasing demand for dras-
tically exaggerated computing. Hence, energy reduction for such
systems is turning crucial. The dynamic voltage and frequency
scaling (DVFS) feature have made this target (energy reduction)
feasible. Several modern processors are equipped with the DVFS ca-
pability, where processor frequency is decreased at runtime to save
energy. Huang et al. proposed the integration of dynamic voltage

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

and frequency scaling (DVFS) technique with the earliest deadline
first with virtual deadlines (EDF-VD) scheduling scheme for dual-
criticality systems [22] to enable energy minimization. Huang et
al. established that increased speeds during overrun conditions are
beneficial to minimize expected energy consumption of the system.
This model is extended to accommodate multi-core processors, in
which a trade-off is determined between both static and dynamic
energy consumption in different operation modes [28].

All of the works mentioned above consider a stringent model in
which all the lo-criticality tasks are dropped upon mode switch.
Such Handling of the lo-criticality tasks is argumentative as in
hi-criticality mode, all lo-criticality tasks are penalized and can re-
sult in failures in timing assumptions in hi-criticality tasks [12, 15].
Burns et al. [11] and Su et al. [31] exploits the elastic task model
where lo-criticality tasks continue to execute with extended time-
periods. This model generates accurate but delayed execution re-
sults. Imprecise computing was introduced in mixed-criticality sys-
tems in [4, 11, 27] to balance the safety and performance features.
In this model, each lo-criticality task is also guaranteed to some
(degraded) service after the system switches to the hi-criticality be-
havior. However,Ernst et al. [15] argues that the period and priority
of a task are functional requirements and cannot be altered easily.
Also, degrading services for the execution of lo-criticality tasks can
result in performance or service loss. Pathan et al. [29] observed
that in case of utilization slack during the execution of hi-criticality
tasks in hi-criticality mode, all the lo-criticality tasks need not be
penalized with degraded service. Considering the implicit-deadline
IMC sporadic task, a scheduling technique was proposed by [29].
In this technique, some (if not all) of the lo-criticality tasks were
provided with full service during the hi-criticality behavior as well.

This research. As discussed above, significant work on MC
scheduling has considered some level of precision in scheduling
lo-criticality tasks in a pessimistic condition. They also have con-
sidered speed scaling to minimize energy during run-time. Our
work addresses the need to save energy in platforms supporting
mixed-criticality applications. The idea behind this research is to
entertain both accuracy and energy efficiency in real-time system
applications. Numerous advanced processors support the dynamic
voltage and frequency scaling (DVFS), where processor frequency
can be diminished at run-time to conserve energy as demonstrated
by the energy model in [22]. We adopt an off-line DVFS scheme
to diminish energy utilization in the normal mode by choosing a
minimum speed (≤ 1) for the processor while protecting mixed-
criticality schedulability of the framework. In this paper, we aim to
integrate the precision model in [29] and the varying-speed model
in [22], such that precise computing to all tasks can be guaranteed
in any mode. We also ensure that the processor can run in a (close
to) optimal energy-conserving speed in normal mode. The unified
model is used to schedule implicit-deadline sporadic tasks by the
well-known EDF-VD [9] and MCF [6] scheduling policies. The main
contributions of this paper are:

• This paper explores the aggregation of mixed-criticality
scheduling with design options of recent computing plat-
forms, i.e., combining precise computing of lo-criticality
tasks on varying-speed processors.

• We present conditions to derive the minimum speed for
the processor to execute in normal mode, while correctly
scheduling all the tasks in each mode of operation.
• We propose a sufficient test for our precise-energy conserv-
ing model under EDF-VD (see Theorem 3.3) and prove a
quantitative speedup bound and approximation ratio on the
worst-case performance of EDF-VD.
• We further adopted a metric named approximation ratio,
which compares the minimum possible degraded processor
speed without speeding up upon the mode switch. We also
proved the relationship between the approximation ratio of
our algorithm and the per-level utilization of the input task.
• Based on MCF, a fluid scheduling framework for MC tasks,
we proposed another approach for determining the lowest
possible speed under normal mode, as well as the scheduling
strategy. We prove its correctness and derived the utilization
based approximation ratio for this approach.
• Experimental studies are conducted based on randomly gen-
erated synthetic tasks, which supports the theoretical find-
ings as well as the effectiveness of the proposed algorithms.

Organization. The rest of the paper is organized as follows: In
Section 2, the adopted model is elaborated in detail comprising of
system behavior, varying-speed processors, and correctness speci-
fication. Section 3 consists of the literature of the EDF-VD schedul-
ing algorithm and the revised schedulability conditions about the
chosen model; we also determine the approximation ratio of the
proposed approach. Section 4 describes the fluid-based scheduler,
shows its correctness, and derives the approximation ratio of the
approach. Section 5 reports our experimental results, while Sec-
tions 6 and 7 consist of the literature of previous works and the
conclusion.

2 MODEL AND PROBLEM
The considered MC workload comprises of an implicit-deadline 1

sporadic task model where each task-set τ includes n tasks that
are scheduled on a preemptive uniprocessor. Every task τi ∈ τ
may generate an unbounded number of MC jobs, with successive
jobs being released at least Ti time units apart. Without loss of
generality, we assume that all tasks in τ start at time 0.
MC instance. In this paper, we restrict our attention to dual-
criticality task systems where the system has two criticality levels,
χi ∈ {lo,hi}. Each task τi ∈ τ is characterized by 4-tuples =
{Ti , χi ,C

L
i ,C

H
i }, where Ti represents the minimum inter-arrival

time between any two consecutive job releases (by the same task),
CL
i ,C

H
i ∈ R+ are the WCET estimations, and χi ∈ {lo,hi} repre-

sents the criticality level of the task. Due to pessimistic impositions
on assurance for hi-criticality tasks, for our model, we assume that
0 < CL

i < CH
i ≤ Ti hold for hi tasks (τhi) and 0 < CL

i = CH
i ≤ Ti

hold for lo tasks (τlo).
Although the work by Esper et al. [16] and Ernst et al. [15]

criticized the MC model regarding its applicability, we would like
to point out that no criticism has been made to the original Vestal
model, where different certification requirements lead to various
WCET estimations. For run-time robustness, this work takes a
1In an implicit deadline task, task deadlines are equal to its inter-arrival period. Hence,
these two terms are used interchangeably.

2

relatively safe assumption, such that no job is ever dropped and
correctness’s are guaranteed to all jobs under all circumstances (see
problem definition towards the end of this section).

The per-mode utilization of each task τi are determined as fol-
lows:

∀τi , uLi =
CL
i
Ti

;

∀τi , uHi =
CH
i
Ti
.

The total utilization for each mode of operation is represented
as follows:
• Since we do not degrade services for lo-criticality tasks in hi-
criticality mode, their utilization in both modes of operation
remains the same, i.e.,

U L
lo = U

H
lo =

∑
τi ∈τlo

uLi =
∑

τi ∈τlo

uHi .

• The total utilization for all hi-criticality tasks in lo- and
hi-criticality modes can be represented as:

U L
hi =

∑
τi ∈τhi

uLi and UH
hi =

∑
τi ∈τhi

uHi .

Varying-speed processor. State of the art processors is manufac-
tured with several advanced features, such as the DVFS scheme,
where processor frequency can be diminished at run-time to con-
serve energy [22]. We examine off-line DVFS to reduce energy
utilization in the lo-criticality mode by choosing a minimum speed
for the processor while protecting mixed-criticality schedulability
of the framework. The processor is characterized by a normal speed
s (without loss of generality, s ← 1) and an energy-conserving speed
ρ (ρ ≤ 1). During lo-criticality mode, the processor is assumed to
exhibit energy conserving behavior where its speed remains ρ. In
the event of overrun, when the system switches to hi-criticality
mode, the processor exhibits normal behavior where the speed of
the processor is maximized (← 1). Note that task overrun should be
a rare event, hence the system mode switch (lo- to hi-criticality).
So, the system is expected to run at the energy-conserving speed
for most of the time. As a result, processor frequency-changing
overhead is not considered in this paper.
System behavior. The behavioral semantics of the MC workload
is as follows: a job released by task Ti may first execute for its lo-
criticalityWCET (CL

i units of time). If all jobs indicate completion at
after executing for their lo-criticalityWCETs, the system is claimed
to perform in lo-criticalitymode. Else a system-widemode switch is
triggered, and the system exhibits hi-criticality behavior. Analogous
to the traditional MC task-model behavior, instead of discarding
all lo-criticality tasks in hi-criticality mode, our model guarantees
execution time to all tasks according to their given WCETs during
both modes of operation. We incorporate the DVFS technique to
impose a minimum energy-conserving speed in the lo-criticality
mode. Upon mode-switch, the processor immediately performs at
normal speed (of 1). Since we do not know statically how long
the system will overrun, we can safely assume that the system
can recover when the processor is idle, i.e., when all arrived/active
workloads are finished.

Assumption. The relationship between the speed and worst-case
execution time (WCET) of the task is considered to be linear, e.g.,
reducing the execution speed by half will lead to doubling the
execution time. Hence, a task with lo-criticality WCET of Ci (on a
speed-1 processor) would takeCi/ρ time units to finish its execution
on a processor of degraded speed ρ, while the same task will finish
its hi-criticality WCET (i.e.,Ci) after a system mode-switch atCi/1
time units, on a processor with maximum speed 1.

In practice, this assumption should always hold since the speed of
cache and memory access, I/O bus, etc. are not extensively affected
by a change in the processor speed. We believe it is safe in terms
of schedulability to consider a linear relationship, as illustrated
in Figure 1. The actual Ci is a considerably accurate portrayal of
the relationship between processor speed and execution time. We
are considering a pessimistic upper bound on Ci (expected Ci from
Figure 1) by assuming a linear relationship.

Figure 1: Relationship between variable-speed and execu-
tion time, where the expected WCET always caps the actual
execution time. Where ρ represents the energy conserving
speed.

Problem. It is widely accepted that it is rare for any task to exhibit
hi-criticality behavior; i.e., not signaling completion after executing
up-to the lo-criticality WCET. As a result, more attention should
be placed on lo-criticality mode in terms of energy consumption.
In this paper, we seek to reduce energy utilization in the lo-criticality
mode by minimizing the energy-conserving speed ρ for the proces-
sor, while protecting mixed-criticality correctness of the system.We
present a model that integrates precise scheduling of lo-criticality
tasks and energy-minimization using DVFS techniques. The cor-
rectness of the system is mode based, defined as follows:

- During all lo-criticality behaviors of the system, the processor
is down-scaled by the energy-conserving speed ρ. All jobs receive
up to their lo-criticality WCET and meet their deadlines.

- In hi-criticality mode, where one ormore hi-criticality tasks did
not signal their completion upon receiving cumulative execution

3

budget of their lo-criticality WCET, the processor speed increases
to 1, where all jobs (both lo and hi) receive computation time up to
their hi-criticality WCET and still meet their deadlines.

3 EDF-VD AND ITS CORRECTNESS
In this section, we first present how the EDF-VD algorithm for
traditionalMC systemmodel in [9] is modified to handle the focused
case (where lo-criticality tasks can no longer be dropped). The proof
of its correctness in both execution modes is included thereafter.
Traditional EDF-VD scheduling: Baruah et. al [9] proposed an
adaptation to the Earliest Deadline First (EDF) algorithm to sched-
ule dual-criticality implicit-deadline sporadic task systems on a
unit-speed processor. In the situation of task overrun, resources
have to be retained for the hi-criticality tasks, to guarantee that
they can still meet their deadlines. In the EDF-VD algorithm, the
reservation of resources for hi-criticality tasks is accomplished in
the lo-criticality mode by artificially scaling down the deadlines
of hi-criticality tasks. Such scaled virtual deadline settings enables
hi-criticality tasks to budget enough resources to handle overrun
while finishing their lo-criticality WCET within the lo-criticality
mode. In order to address the resource demands on different levels
of criticality:
• In lo-criticality mode, the EDF-VD algorithm adjusts the
deadlines of all the hi-criticality tasks by a common factor
x . This is done to retain budget for the hi-criticality tasks in
hi-criticality mode by triggering an earlier mode-switch.
• In hi-criticality mode, the hi-criticality tasks are scheduled
according to their original deadlines (using EDF) and all lo-
criticality tasks are discarded (or executed with best effort
in the background).

3.1 EDF-VD for Precise Energy-Conserving
Model

In this section, we describe in detail the enhanced EDF-VD algo-
rithm to compromise our precise energy-conserving model. As
discussed earlier, we consider the DVFS technique to conserve en-
ergy in lo-criticality mode by slowing down the processor to speed
ρ. Figure 2 represents a modified EDF-VD algorithm which deter-
mines if the task-set τ is schedulable. Then, the modified EDF-VD
assigns virtual deadline T̂i for all hi-criticality tasks of the schedu-
lable task-set. Note that, we describe how to derive the minimum ρ
with any given MC set later in Theorem 3.4.

According to the algorithm in Figure 2, the scaling factor x is
computed and T̂i values are assigned to all hi-criticality tasks as
T̂i ← xTi . Note that U L

lo + U
L
hi ≤ ρ is a necessary condition for

schedulability under lo-criticality mode, x ≤ 1 always holds for the
proposed assignment. Theorem 3.1 demonstrates how parameter
x is derived. Contradictory to the traditional MC model, instead
of discarding all lo-criticality tasks in hi-criticality behaviors, our
model schedules both lo- and hi-criticality tasks with their given
WCETs at processor speed s ← 1. Note that, we did not consider any
additional overhead (thatmay be introduced) for changing the speed
from ρ to the maximum speed (i.e., s ← 1). This assumption does
not have a profound effect for two reasons. First, mode-switching
is a rare event, and hence the changing of the speed. Second, we
change the speed only once per mode switch.

For a dual-criticality task-set τ = {τ1,τ2,,τn } to be scheduled
by energy conserving preemptive processor with normal speed ρ

and max speed 1:
• Scaling factor x is computed to determine virtual deadline
of hi-criticality tasks:

x ←
U L
hi

ρ −U L
lo

• IfU L
lo +

U H
hi

(1−x) ≤ 1
then virtual-deadline T̂i ← xTi for every hi task τi ;

Else return failure.

Figure 2: Modified EDF-VD schedulability condition and
scaling factor x

3.2 Correctness under LO-Criticality Mode
In the lo-criticality mode, lo-criticality (hi-criticality) tasks are
guaranteed to receive time budgets equal to their lo-WCET values
within their deadlines (virtual deadlines) at processor speed ρ. For
all tasks being scheduled in lo-criticality mode, we establish the
following theorem.

Theorem 3.1. The following condition is sufficient for guaran-
teeing that EDF-VD correctly schedules all the assignments in lo-
criticality mode:

x ≥
U L
hi

ρ −U L
lo

(1)

Proof. According to the EDF-VD algorithm, the virtual dead-
lines of all the hi-criticality tasks for our model are determined
prior to run-time. That is, for all τi ∈ τhi, we determine the virtual
deadline, T̂i , where T̂i = xTi . Scaling down the period of each hi-
criticality task by parameter x indicates increase in its utilization by
a factor of x . If all the jobs execute for no more than lo-criticality
WCETs (CL

i), the utilization bound of EDF for implicit-deadline
tasks which is equal to processor capacity [26]. We can therefore
conclude that:

U L
lo +

U L
hi

x
≤ ρ

=⇒ x ≥
U L
hi

ρ −U L
lo

is sufficient for guaranteeing that EDF-VD correctly schedules all
the assignments in lo-criticality mode. ■

The smallest value of x such that Theorem 3.1 is satisfied is
chosen by the EDF-VD algorithm:

x ←
U L
hi

ρ −U L
lo

(2)

We now derive a sufficient condition to ensure that EDF-VD meets
all deadlines in hi-criticality mode using obtained value of parame-
ter x .

4

ai t∗ T̂i Ti

T̂i ← x ×Ti
(1 − x) ×Ti

Figure 3: Relation between time instants under EDF-VD
framework.

3.3 Correctness under HI-Criticality Mode
Similar to the classical model, if a hi-criticality task τi does not
signal completion after CL

i units of execution within its virtual
deadline equal to T̂i , the system exhibits hi-criticality behaviors
and triggers a mode-switch. At a specific time instant t* during
run-time, in the event that the scheduler identifies a hi-criticality
task executing for a duration greater that its CL

i without signaling
completion, a systemwidemode-switch is activated which indicates
a need to perform the following:

• re-assignment of time period Ti of active hi-criticality tasks
from T̂i (xTi) to Ti .
• continue to execute lo-criticality tasks without discarding
them (anomalous to the traditional MC-model).
• the speed of the processor increases from ρ to 1.

Theorem 3.2. The following condition is sufficient for guaran-
teeing that EDF-VD correctly schedules all the assignments in hi-
criticality mode:

U L
lo +

UH
hi

(1 − x)
≤ 1 (3)

Proof. If there is an active hi-criticality task at mode-switch
instant t*, the relative deadline of the hi-criticality task is adjusted
to T̂i = xTi . The actual deadline isTi−xTi = (1−x)Ti time units in the
future. The relation is illustrated in Figure 3. Thus the utilization of

hi-criticality tasks after time instant t* is upper bounded by CH
i

(1−x)Ti .
Summing over all hi- and lo-criticality tasks according to the

fact that EDF has a utilization bound equal to the processor capacity
(which in our case is 1) we conclude that the following condition is
sufficient for guaranteeing that EDF-VD correctly schedules all the
assignments in the hi-criticality mode.:

∑
i |χi=LO

CL
i
Ti
+

∑
i |χi=HI

CH
i

(1 − x)Ti
≤ 1

U L
lo +

UH
hi

(1 − x)
≤ 1

Note that we assumeUH
hi > U L

hi and thus deadlinemust be shrunk
to create some resource capacity for the additional workload after
mode switch, i.e., x < 1. ■

The upper bound of scaling parameter x can be determined as:

(3) ⇔ (1 − x)U L
lo +U

H
hi ≤ 1 − x (4)

⇔ U L
lo − xU

L
lo +U

H
hi ≤ 1 − x (5)

⇔ x(1 −U L
lo) ≤ 1 − (UH

hi +U
L
lo) (6)

⇔ x ≤
1−(U H

hi +U
L
lo)

(1−U L
lo)

(7)

We have thus justified the correctness of the EDF-VD scheduling
algorithm. From Theorem 3.1, the value of x ensures the correct-
ness of all lo-criticality behaviors, and Theorem 3.2 guarantees
the correctness of all hi-criticality behaviors. We give the follow-
ing sufficient condition for MC-schedulability by EDF-VD for our
precise energy-conserving model.

Theorem 3.3. If τ satisfies

U L
lo +min

(
UH
hi ,

U L
hi(

1 −
UH
hi

1 −U L
lo

))
≤ ρ (8)

then it is schedulable by EDF-VD.

Proof. We consider two cases:
Case A:U lo

lo +U
hi
hi ≤ ρ, In this case, all the lo- and hi-criticality

tasks are considered performing on processor with speed ρ which is
worst-case reservation schedulable by EDF [2]. The total utilization
of the tasks can be represented as:

U L
lo

ρ
+
UH
hi

ρ
≤ 1

The task set can be scheduled by EDF without deadline scaling for
hi-criticality tasks at an energy conserving speed.

Case B:U L
lo +U

H
hi ≥ ρ

For Condition (8) to hold, it must be the case that,

U L
lo +

U L
hi

(1 −
UH
hi

1 −U L
lo
)

≤ ρ

⇒
U L
hi

1 − (U L
lo +U

H
hi)

1 −U L
lo

≤ ρ −U L
lo

⇒
U L
hi

ρ −U L
lo
≤

1 − (U L
lo +U

H
hi)

1 −U L
lo

⇒ x ≤
1 − (U L

lo +U
H
hi)

1 −U L
lo

⇒ U L
lo +

UH
hi

(1 − x)
≤ 1

which is the schedulability condition to correctly schedule all the
tasks in hi-criticality mode. ■

By combining Theorem 3.1 and Theorem 3.2, we prove the fol-
lowing theorem.

Theorem 3.4. Given a precise mixed criticality model task set, the
minimum value of ρ for the task set to be schedulable by EDF-VD is:

min

(
U L
lo +U

H
hi , U

L
lo +

U L
hi(1 −U L

lo)

1 − (UH
hi +U

L
lo)

)
(9)

5

only when,

U L
lo +

U L
hi(1 −U L

lo)

1 − (UH
hi +U

L
lo)
≤ 1

Proof. On combining Theorem 3.1 and 3.2, from Condition
(1) and Condition (7) we can represent the range of the value of
parameter x :

U L
hi(τ)

ρ −U L
lo(τ)

≤ x ≤
1 − (UH

hi +U
L
lo)

(1 −U L
lo)

Thus determining the minimum value of ρ as:

U L
hi(τ)

ρ −U L
lo(τ)

≤
1 − (UH

hi +U
L
lo)

(1 −U L
lo)

⇒ U L
lo +

U L
hi(1 −U L

lo)

1 − (UH
hi +U

L
lo)
≤ ρ

⇒ U L
lo +

U L
hi

1 − (UH
hi +U

L
lo)

1 −U L
lo

≤ ρ

which is the sufficient condition (refer to Theorem 3.3) to ensure
that EDF-VD successfully schedules all the hi-criticality tasks in
τ . ■

3.4 Approximation Ratio
It has been proven that MC-schedulability for dual-criticality re-
current task systems is NP-hard in the strong sense, thus adopting
non-optimal algorithms (EDF-VD) is justified [1]. An instance is de-
clared as MC-schedulable if any non clairvoyant on-line algorithm
correctly schedules it.

Definition 3.5. An algorithm A has an approximation ratio
of α ≥ 1 if and only if some non clairvoyant on-line algorithm
can guarantee MC correctness with full speed of 1 and a energy
conserving speed of ρ, Algorithm A guarantees MC correctness
to the same set with a processor of normal speed 1 and energy
conserving speed of α × ρ.

Theorem 3.6. For the precise MC scheduling problem, algorithm
EDF-VD has an approximation ratio no larger than

1 +
U L
hi(1 −U L

lo)

U L
lo(1 − (UH

hi +U
L
lo))

(10)

Proof. We observe that any task-set τ that is correctly scheduled
by a clairvoyant scheduler upon a processor with normal speed 1
and energy conserving speed α × ρ must necessarily satisfy:

max

(
U L
lo

αρ
+
U L
hi

αρ
,U L

lo +U
H
hi

)
≤ 1 (11)

Inequality (11) only indicates that the speed of the processor is
increased by an approximation ratio α in the lo-criticality mode.

It is safe to assume that energy conserving speed is always ≤
normal speed. For an on-line algorithm A, to correctly claim that τ
is MC-schedulable, we derive a bound (range) for the approxima-
tion ratio where α × ρ ≤ 1. To generate a viable upper bound for
approximation ratio, we have the following two cases:

Case 1: If ρ ≥ U L
lo +min

(
UH
hi ,

U L
hi(1 −U L

lo)

1 − (UH
hi +U

L
lo)

)
.

If this condition is true, we can claim that ρ ≥ ρmin . This is
evident from Condition (9) of Theorem 3.4. If ρ ≥ ρmin , for any
value of ρ ≤ 1 the system will be schedulable. Thus for this case
the maximum value of α to guarantee MC-correctness is 1.

Case 2: If ρ ≤ U L
lo +min

(
UH
hi ,

U L
hi(1 −U L

lo)

1 − (UH
hi +U

L
lo)

)
.

The maximum value of α for an on-line algorithm to correctly
schedule a system can be given as:

α ≤ 1 +
U L
hi(1 −U L

lo)

U L
lo(1 − (UH

hi +U
L
lo))

We justify the reason for selecting such a bound below:
From Theorem 3.4 we have the minimum value of ρmin as,

min

(
U L
lo +U

H
hi , U

L
lo +

U L
hi(1 −U L

lo)

1 − (UH
hi +U

L
lo)

)
The schedulability condition is guaranteed if and only if ρ ≥ ρmin .
In this case the value of α should be such that αρ should satisfy
the schedulability condition i.e., α ≥ ρmin/ρ. Keeping this as a
minimum bound required for α , we select a maximum bound for
α as ρmin/U

lo
lo . Since 0 ≤ U lo

lo < ρ ≤ 1, for this value of α , the
schedulability condition will always hold. Thus we have

α ≤ 1 +
U L
hi(1 −U L

lo)

U L
lo(1 − (UH

hi +U
L
lo))

The inequality (10) does not represent the tightest upper bound,
but an significantly improvement over the loose upper-bound of
1/ρ. The performance of the algorithm with the derived value of α
is demonstrated in Figure 8 in Section 8. ■

4 FLUID SCHEDULING
We now present another approach to tackle the same problem,
which is based on fluid scheduling framework. In fluid scheduling,
all the tasks receive a fraction of the processor and have a constant
execution rate from their release to the deadline. To be a feasible
schedule, the summation of the assigned executing speeds of all
tasks should not exceed the capacity (or the speed) of the processor.

For each lo-criticality task, a minimum necessary execution
speed of θi = ui would be sufficient under both modes. While for
a hi-criticality task, it would need a relatively larger speed under
the normal mode (to create enough gap after the mode switch to
handle the additional execution requirement), and even a larger
speed after the mode switch. Such a relationship is demonstrated
in Figure 4, where the blue character indicates lo-criticality task
setting and the red character represents hi-criticality task settings.

Note that, MC-DP-Fair [25] can transform any fluid MC schedule
into a schedule where each task is assigned with either zero or one
processor at each time instant, i.e, a schedule applicable to the
actual computing platforms. Hence in the remainder of this section,
we will not handle the issue on constructing non-fluid schedules.

First, some simplified notations for the per-mode utilization of
the whole task set τ :

U L =
∑
i
uLi ; U

H =
∑
i
uHi .

Each task τi is assigned a execution speed θi in the hi-criticality
mode and is assigned λ · θi in the lo-criticality mode where 0 <
λ ≤ 1.

6

Figure 4: Relation between fluid execution speed and cumu-
lative execution over time of a task under MCF framework.

In this section, we will show that defining λ and θi in the fol-
lowing manner can result in a schedule where all deadlines are
guaranteed to meet in both the hi-criticality mode and the lo-
criticality mode, provided a minimum speed λ is granted in the
lo-criticality mode (and the full speed, i.e., the unit-speed 1.0, of
the processor that would be enabled in the hi-criticality mode).

For a dual-criticality task-set τ = {τ1,τ2,,τn } to be scheduled
by energy conserving preemptive processor:

• A system-wide parameter λ and per-task parameters θi are
computed as:

λ =
U L

1 +U L −UH . (12)

∀i, θi =
uLi
λ
+ uHi − u

L
i (13)

• If the energy-conserving speed ρ ≥ λ
then each task τi is to be executed at speed λ · θi in the
lo-criticality mode and at speed θi in the hi-criticality
mode;

Else return failure.

Figure 5: Modified MCF speed assignments and schedulabil-
ity condition

Note that, we have 0 < λ ≤ 1 (see Equation (12)) becauseU lo > 0
and U hi ≤ 1. Also, the following Lemma shows that the total
allocated execution speeds to tasks in the hi-mode match the full
speed of the processor (i.e., 1.0).

Lemma 4.1.
∑
i θi = 1.

Proof. ∑
i
θi =

∑
i u

L
i

λ
+

∑
i
uHi −

∑
i
uLi

=
U L

λ
+UH −U L

= 1 +U L −UH +UH −U L

= 1

■

This lemma plus the condition that ρ ≥ λ also directly implies
that the total allocated execution speeds to tasks in the lo-criticality
mode do not exceed the energy-conserving speed, i.e.,

∑
i (λθi) =

λ ≤ ρ.
Lemma 4.1 indicates the proposed fluid executing speeds as-

signment does not exceed the processor’s speed limit. Then, Theo-
rem 4.2 shows that this speed assignment is sufficient to guarantee
all deadlines to be met.

Theorem 4.2. All deadlines are met in the fluid schedule where
task τi ’s speed is λθi under lo-criticality mode and θi under hi-
criticality mode, where θi and λ values are assigned according to
Equations (12) and (13).

Proof. We prove this theorem by focusing on an arbitrary job
τi, j in the systems and discuss three cases by where its release time
and deadline are. We let ri, j , and di, j denote the release time and
deadline of the job of interest τi, j and let ts denotes the time instant
when the mode switch was triggered. If there is no mode switch, ts
can be interpreted as +∞. Then, we have the following three cases
for the job of interest τi, j .
Case 1: ri, j < di, j ≤ ts . Because ri, j < di, j ≤ ts , τi, j must complete
its executionwhen receivesClo

i execution; otherwise, amode switch
must be triggered at an earlier time than ts . Also, in the lo-criticality
mode, τi, j is being executed at speed λ ·θi = uLi + (u

H
i −u

L
i)λ ≥ uLi ,

because uHi ≥ uLi . Therefore, τi, j must meet its deadline di, j =
ri, j +Ti .
Case 2: ts ≤ ri, j < di, j . In the hi-criticality mode, τi, j is being

executed at speed θi =
uLi
λ + u

H
i − u

L
i ≥ uHi , because 0 < λ ≤ 1

implies 1
λ − 1 ≥ 0. Also, τi, j must complete its execution when

receivesCH
i execution. Therefore, τi, j must meet its deadline di, j =

ri, j +Ti .
Case 3: ri, j < ts < di, j . In this case, τi, j is released in the lo-
criticality mode but has a deadline in the hi-criticality mode. There-
fore, τi, j may be executed during time interval [ri, j , ts) at speed
λ · θi and during time interval [ts ,di, j) at speed θi .

Starting with an executing speed λ · θi , the job of interest τi, j
must have done λ · θi (ts − ri, j) execution at time ts , and will then
being executed by speed θi . Therefore, letting f denote the time
instant at which τi, j completes its execution, it must hold that

f ≤ ts +
CH
i − λ · θi (ts − ri, j)

θi

= (1 − λ)ts + λ · ri, j +
CH
i
θi
. (14)

On the other hand, it must hold that

λ · θi (ts − ri, j) ≤ CL
i ; (15)

otherwise, a mode switch would have been trigger at an earlier
time than ts . It is also clear that (15) implies

ts ≤ ri, j +
CL
i

λ · θi
. (16)

7

Therefore, by (14), (15), and the fact that λ ≤ 1,

f ≤ (1 − λ)

(
ri, j +

CL
i

λ · θi

)
+ λ · ri, j +

CH
i
θi

= ri, j +
CL
i

λ · θi
+
CH
i
θi
−
CL
i
θi

= ri, j +
uLi ·Ti

λ · θi
+
uHi ·Ti

θi
−
uLi ·Ti

θi

= ri, j +

(
uLi
λ
+ uHi − u

L
i

)
Ti
θi

= ri, j +Ti

= di, j .

That is, τi, j also must meet its deadline in Case 3.
Because the job of interest τi, j was chosen arbitrarily and the

three cases exhausted all possibilities for τi, j , all jobs must meet
their deadlines, and the theorem follows. ■

Theorem 4.3. The modified MCF algorithm in Figure 5 has an
approximation ratio no greater than 1/(1 +U lo −U hi).

Proof. Let λ∗ denote the minimal required degraded speed such
that the system is schedulable under an optimal scheduler (poten-
tially with clairvoyance) and λ is calculated by (12). Then, our goal
is to upper bound λ/λ∗.

λ∗ must be at least U L so that the system is not over-utilized
in the lo-criticality mode, i.e., λ∗ ≥ U L . Then, it, by (12), directly
leads to that λ/λ∗ ≤ 1/(1 +U L −UH). ■

Note that MCF and EDF-VD are incomparable to each other; i.e.,
there exists an MC task set where MCF would return a smaller
normal mode speed than EDF-VD, while there also existing an
MC task set with the opposite relationship. Such a relationship is
demonstrated via experiments in Section 5.

5 EXPERIMENTAL EVALUATION
Wehave conducted a progression of schedulability tests to assess the
effectiveness of the EDF-VD scheduling technique to guarantee that
MC implicit deadline sporadic task systems are correctly scheduled.

The experiments were conducted on a randomly generated task-
set that were generated according to the workload generationmodel
established by Guan et al. [18] with further modifications. The input
specifications for our workload generation are as follows:
• Ubound is the desired upper bound of utilization of the sys-
tem: (U L

lo(τ) +U
H
hi (τ))

• The time period of a task is randomly chosen in the range
[Tdown ,Tup]; 0 ≤ Tdown ≤ Tup .
• For each task, a value is randomly selected in the range
[Udown ,Uup] and multiplied with task’s period, to obtain
execution time in the lo-mode; 0 ≤ Udown ≤ Uup ≤ 1.
• The ratio of hi-criticality WCET and lo-criticality WCET is
drawn from the range [Zdown ,Zup]; 1 ≤ Zdown ≤ Zup .
• P : Probability that the chosen task is hi-critical; 0 ≤ P ≤ 1

For the generation of a MC-workload from the combination of
these parameter values, the task generation algorithm adds tasks

to an empty set until the utilization bound is met iteratively. In
our experiments, we determine the ratio of systems scheduled cor-
rectly against the system utilizationUbound . Simulations are carried
out for different values of ρ. Although we cannot draw authori-
tative conclusions from the experiments as the random workload
generator influences the results, we do make some interesting ob-
servations.

When the average utilization percentage is smaller than 0.5, the
task system is always schedulable. This observation from Figure 6
matches our speed-up factor computation, and it demonstrates the
ratio of systems scheduled correctly as a function of system utiliza-
tion. For different values of ρ ranging from [0.5,0.9] and Utilization
ranging from [0.4,1.0], Figure 6 reports the schedulability ratio for
EDF-VD and the MCF (left and mid sub-figure respectively). We see
that the system is completely schedulable when the average utiliza-
tion is ≤ 0.5. Figure 6 (right) compares the performance of EDF-VD
and the MCF (in terms of schedulability ratio) for different utiliza-
tion values ranging from [0.4,1.0] and different ρ values ranging
from [0.6,0.9]. This result reports that none of them is superior (infe-
rior) over (to) the other. However, when the utilization is not more
than 0.8, MCF performs better (or equal) than EDF-VD. Similarly, in
Figure 7, the performance of the EDF-VD and MCF algorithm (left
and middle sub-figure), and their performance comparison (right
sub-figure) is demonstrated for a workload with different values of
ρ and [Zdown ,Zup] = [1, 8].

Figure 8 shows the ratio of correctly scheduled task sets with
an energy-conserving speed of α × ρ against system utilization
The performance of the algorithm was determined again with an
energy-conserving speed of αρ and normal speed 1, where α is
the approximation ratio. The maximum value of α was considered
according to Condition (10) as proved in Subsection 3.4. It is interest-
ing to observe that the maximum bound chosen for approximation
ratio α is sufficient to guarantee MC correctness by an on-line
non-clairvoyant algorithm.

6 RELATEDWORKS
Significant work has concentrated on various versions of the MC
model proposed by Vestal [32]. A thorough review of the various
adaptations is reviewed in the survey by Burns et al. [12]. Sev-
eral of these current works adopt a rigorous approach of dropping
the lo-criticality jobs in hi-criticality mode [3, 8, 13, 14]. Burns et
al. [11] were the first to address this issue by assigning time budgets
to lo-priority tasks by switching their priority or degrading their
services by extending the periods in hi-criticality mode [23, 24].
However, the work by Ernst et al. [15] has criticized these tech-
niques mentioned above because of having minor setbacks and
being not practical. Another approach is presented by Burns et
al. [11], popularly known as the IMC model, where the execution
time of lo-criticality tasks is diminished in the event of a mode-
switch. The schedulability analysis of the IMC model has been
studied for both fixed-priority scheduling and EDF-VD by Burns
et al. [11] and Liu et al. [27] respectively. The work by Baruah et
al. [5] considered a generalization of the Vestal model where the
less critical functionalities are not entirely discarded even in the
hi-criticality mode. Lee et al. [25] proposed the MC-Fluid (a fluid

8

0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

 System utilization

R
a
ti
o
 o

f
S

y
s
te

m
s
 S

c
h
e
d
u
le

d
 (

%
)

ρ=0.5

ρ=0.55

ρ=0.6

ρ=0.65

ρ=0.7

ρ=0.75

ρ=0.8

ρ=0.85

ρ=0.9

0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

 System utilization

R
a
ti
o
 o

f
S

y
s
te

m
s
 S

c
h
e
d
u
le

d
 (

%
)

ρ=0.5

ρ=0.55

ρ=0.6

ρ=0.65

ρ=0.7

ρ=0.75

ρ=0.8

ρ=0.85

ρ=0.9

0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

 System utilization

R
a

ti
o

 o
f

S
y
s
te

m
s
 S

c
h

e
d

u
le

d
 (

%
)

ρ=0.6 (MCF)

ρ=0.6 (EDF−VD)

ρ=0.7 (MCF)

ρ=0.7 (EDF−VD)

ρ=0.8 (MCF)

ρ=0.8 (EDF−VD)

ρ=0.9 (MCF)

ρ=0.9 (EDF−VD)

Figure 6: Example outcome of schedulability experiments of (left) EDF-VD, (mid) MCF, and (right) comparison between
EDF-VD and the MCF. We change the value of ρ with other fixed parameters (i.e., [Udown ,Uup] = [0.02, 0.2]; [Tdown ,Tup] =
[5, 50]; [Zdown ,Zup] = [1, 4]; P = 0.5).

0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

 System utilization

R
a
ti
o
 o

f
S

y
s
te

m
s
 S

c
h
e
d
u
le

d
 (

%
)

ρ=0.5

ρ=0.55

ρ=0.6

ρ=0.65

ρ=0.7

ρ=0.75

ρ=0.8

ρ=0.85

ρ=0.9

0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

 System utilization

R
a
ti
o
 o

f
S

y
s
te

m
s
 S

c
h
e
d
u
le

d
 (

%
)

ρ=0.5

ρ=0.55

ρ=0.6

ρ=0.65

ρ=0.7

ρ=0.75

ρ=0.8

ρ=0.85

ρ=0.9

0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

 System utilization

R
a

ti
o

 o
f

S
y
s
te

m
s
 S

c
h

e
d

u
le

d
 (

%
)

ρ=0.6 (MCF)

ρ=0.6 (EDF−VD)

ρ=0.7 (MCF)

ρ=0.7 (EDF−VD)

ρ=0.8 (MCF)

ρ=0.8 (EDF−VD)

ρ=0.9 (MCF)

ρ=0.9 (EDF−VD)

Figure 7: Example outcome of schedulability experiments of (left) EDF-VD, (mid) MCF, and (right) comparison between
EDF-VD and the MCF. We change the value of ρ with other fixed parameters (i.e., [Udown ,Uup] = [0.02, 0.2]; [Tdown ,Tup] =
[5, 50]; [Zdown ,Zup] = [1, 8]; P = 0.5).

0 0.2 0.4 0.6 0.8 1

ULO
LO

+ UHI
HI

0

0.2

0.4

0.6

0.8

1

R
a
ti
o
o
f
ta
sk

se
ts

sc
h
ed
u
le
d
co
rr
ec
tl
y

w
it
h
sp
ee
d
α
ρ

Figure 8: Performance of the EDF-VD algorithm under nor-
mal speed 1 and energy conserving speed αρ; with α value
determined from Equation (10)

model-based scheduling algorithm) for the MC tasks in a multipro-
cessor platform. In the MC-Fluid model, for each task, a criticality

dependent execution rate is determined. They also proposed MC-
DP-Fair, which is an implementable version (on a real-hardware)
of MC-Fluid. The work by Baruah et al. [6] derived MCF, which
is a simplified variant of MC-Fluid. For a dual-criticality system,
they proved that the MCF has a speedup bound no worse than
1.33. Finally, they improved the speedup bound for MC-Fluid from
1.618 to 1.33. Considering the adaptive MC- Weakly Hard model
Gettings et al. [17] proposed a response time-based schedulability
analysis. MC- Weakly Hard model guarantees a minimum service
for lo-criticality tasks in case of a mode switch.

Energy minimization has also become a rising concern in the
non-MC [10, 19, 20, 30] and the MC applications [22]. Huang et
al. [22] have exploited the DVFS technique to address energy min-
imization issue in mixed-criticality systems by speeding up the
processor speed during overrun. Huang et al. [22] also established
that increased speeds during overrun conditions are beneficial to
minimize expected energy consumption of the system. However,
in their approach, all the lo-criticality tasks are penalized in hi-
criticality mode. This model was extended by Narayana et al. [28]
to accommodate multi-core processors, in which a trade-off is de-
termined between both static and dynamic energy consumption in
different operation modes (lo- and hi-criticality).

9

7 CONCLUSION
The conventional mixed-criticality model, despite its popularity, is
controversial for penalizing all lo-criticality tasks in hi-criticality
mode. Recent works throw light on overcoming this setback by
partially (if not entirely) trying to accommodate lo-criticality tasks
even under pessimistic behaviors. In this work, we develop an inte-
grated model combining precise scheduling of lo-criticality tasks
on energy conserving platforms that adopt the DVFS strategy. Two
sufficient tests for this unified model under both EDF-VD and MCF
scheduling framework are proposed. The sufficient test is evaluated
theoretically with sound proofs and via schedulability experiments
on randomly generated workloads. We provide results on calculat-
ing the approximation ratio to satisfy real-time requirements in the
typical situations.

As the future work, we seek to derive and prove a tighter bound
for the approximation ratio (if one exists). We also plan to work on
counterexamples to show the minimum possible bound, and also
explore schedulability conditions under a task-wise mode-switch,
contrary to the system-wise mode switch adopted in this work. We
also wish to conduct a simulation study on actual energy savings
with on-board implementations.

ACKNOWLEDGMENTS
We would like to thank Prof. Sanjoy Baruah from Washington
University in St Louis for sharing his valuable insights. This work
is supported by NSF grant CNS-1850851, a start-up grant from the
University of Central Florida, and start-up and REP grants from
Texas State University.

REFERENCES
[1] Sanjoy Baruah and Kunal Agarwal. 2018. Intractability issues in mixed-criticality

scheduling. In Proceedings of the 30th EuroMicro Conference on Real-Time Systems
(ECRTS), IEEE. IEEE.

[2] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo DAngelo, Haohan Li, Alberto
Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. 2012. The pre-
emptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic
task systems. In Proceedings of the 24th Euromicro Conference on Real-Time Systems
(ECRTS), IEEE. IEEE, 145–154.

[3] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’angelo, Haohan Li, Alberto
Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. 2015. Preemptive
uniprocessor scheduling of mixed-criticality sporadic task systems. Journal of
the ACM (JACM) 62, 2 (2015), 14.

[4] Sanjoy Baruah, Alan Burns, and Zhishan Guo. 2016. Scheduling mixed-criticality
systems to guarantee some service under all non-erroneous behaviors. In Pro-
ceedings of the 28th Euromicro Conference on Real-Time Systems (ECRTS), IEEE.
IEEE, 131–138.

[5] Sanjoy Baruah, Alan Burns, and Zhishan Guo. 2016. Scheduling mixed-criticality
systems to guarantee some service under all non-erroneous behaviors. In 2016
28th Euromicro Conference on Real-Time Systems (ECRTS). IEEE, 131–138.

[6] Sanjoy Baruah, Arvind Easwaran, and Zhishan Guo. 2015. MC-Fluid: simplified
and optimally quantified. In 2015 IEEE Real-Time Systems Symposium. IEEE, 327–
337.

[7] Sanjoy Baruah and Zhishan Guo. 2013. Mixed-criticality scheduling upon varying-
speed processors. In 2013 IEEE 34th Real-Time Systems Symposium. IEEE, 68–77.

[8] Sanjoy Baruah and Zhishan Guo. 2014. Scheduling mixed-criticality implicit-
deadline sporadic task systems upon a varying-speed processor. In Proceedings
of the 35th Real-Time Systems Symposium (RTSS), IEEE. IEEE, 31–40.

[9] Sanjoy K Baruah, Vincenzo Bonifaci, Gianlorenzo D-Angelo, Alberto Marchetti-
Spaccamela, Suzanne Van Der Ster, and Leen Stougie. 2011. Mixed-criticality
scheduling of sporadic task systems. In European Symposium on Algorithms.
Springer, 555–566.

[10] Ashikahmed Bhuiyan, Zhishan Guo, Abusayeed Saifullah, Nan Guan, and Haoyi
Xiong. 2018. Energy-efficient real-time scheduling of DAG tasks. ACM Transac-
tions on Embedded Computing Systems (TECS) 17, 5 (2018), 84.

[11] Alan Burns and Sanjoy Baruah. 2013. Towards a more practical model for mixed
criticality systems. In Workshop on Mixed-Criticality Systems (colocated with

RTSS).
[12] Alan Burns and Robert I Davis. 2017. A survey of research into mixed criticality

systems. ACM Computing Surveys (CSUR) 50, 6 (2017), 82.
[13] Arvind Easwaran. 2013. Demand-based scheduling of mixed-criticality sporadic

tasks on one processor. In Proceedings of the 34th Real-Time Systems Symposium
(RTSS), IEEE. IEEE, 78–87.

[14] Pontus Ekberg and Wang Yi. 2014. Bounding and shaping the demand of gen-
eralized mixed-criticality sporadic task systems. Real-time systems 50, 1 (2014),
48–86.

[15] Rolf Ernst and Marco Di Natale. 2016. Mixed Criticality Systems - A History of
Misconceptions? IEEE Design & Test 33, 5 (2016), 65–74.

[16] Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, and Eduardo Tovar. 2015.
How realistic is the mixed-criticality real-time system model?. In Proceedings
of the 23rd International Conference on Real Time and Networks Systems. ACM,
139–148.

[17] Oliver Gettings, Sophie Quinton, and Robert I Davis. 2015. Mixed criticality
systems with weakly-hard constraints. In Proceedings of the 23rd International
Conference on Real Time and Networks Systems. ACM, 237–246.

[18] Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. 2013. Improving the
scheduling of certifiable mixed-criticality sporadic task systems. Technical Report
2013–008 (2013).

[19] Zhishan Guo, Ashikahmed Bhuiyan, Di Liu, Aamir Khan, Abusayeed Saifullah,
and Nan Guan. 2019. Energy-Efficient Real-Time Scheduling of DAGs on Clus-
tered Multi-Core Platforms. In 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 156–168.

[20] Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan, and Haoyi
Xiong. 2017. Energy-efficient multi-core scheduling for real-time DAG tasks.
(2017).

[21] Zhishan Guo, Kecheng Yang, Sudharsan Vaidhun, Samsil Arefin, Sajal K Das, and
Haoyi Xiong. 2018. Uniprocessor Mixed-Criticality Scheduling with Graceful
Degradation by Completion Rate. In 2018 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 373–383.

[22] Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar Thiele.
2014. Energy efficient dvfs scheduling formixed-criticality systems. In Proceedings
of the 14th International Conference on Embedded Software, ACM. ACM, 11.

[23] Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar Thiele.
2015. Run and be safe: Mixed-criticality scheduling with temporary processor
speedup. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
2015. IEEE, 1329–1334.

[24] Mathieu Jan, Lilia Zaourar, and Maurice Pitel. 2013. Maximizing the execution
rate of low criticality tasks in mixed criticality system. Proc. WMC, RTSS (2013),
43–48.

[25] Jaewoo Lee, Kieu-My Phan, Xiaozhe Gu, Jiyeon Lee, Arvind Easwaran, Insik Shin,
and Insup Lee. 2014. Mc-fluid: Fluid model-based mixed-criticality scheduling
on multiprocessors. In 2014 IEEE Real-Time Systems Symposium. IEEE, 41–52.

[26] Chung Laung Liu and James W Layland. 1973. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the ACM (JACM) 20, 1
(1973), 46–61.

[27] Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor Stefanov, and
Wang Yi. 2016. EDF-VD scheduling of mixed-criticality systems with degraded
quality guarantees. In Proceedings of the 37th Real-Time Systems Symposium
(RTSS), 2016 IEEE. IEEE, 35–46.

[28] Sujay Narayana, Pengcheng Huang, Georgia Giannopoulou, Lothar Thiele, and
R Venkatesha Prasad. 2016. Exploring energy saving for mixed-criticality systems
on multi-cores. In Proceedings of the 22nd Real-Time and Embedded Technology
and Applications Symposium (RTAS), IEEE. IEEE, 1–12.

[29] Risat Mahmud Pathan. 2017. Improving the Quality-of-Service for Scheduling
Mixed-Criticality Systems on Multiprocessors. In LIPIcs-Leibniz International
Proceedings in Informatics, Vol. 76. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik.

[30] Saad Zia Sheikh and Muhammad Adeel Pasha. 2018. Energy-Efficient Multi-
core Scheduling for Hard Real-Time Systems: A Survey. ACM Transactions on
Embedded Computing Systems (TECS) 17, 6 (2018), 94.

[31] Hang Su and Dakai Zhu. 2013. An elastic mixed-criticality task model and its
scheduling algorithm. In Proceedings of the Conference on Design, Automation and
Test in Europe. EDA Consortium, 147–152.

[32] S. Vestal. 2007. Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance. In Proceedings of the 28th IEEE Real-Time
Systems Symposium (RTSS).

10

	Abstract
	1 Introduction
	2 Model and Problem
	3 EDF-VD and Its Correctness
	3.1 EDF-VD for Precise Energy-Conserving Model
	3.2 Correctness under LO-Criticality Mode
	3.3 Correctness under HI-Criticality Mode
	3.4 Approximation Ratio

	4 Fluid Scheduling
	5 Experimental Evaluation
	6 Related Works
	7 Conclusion
	References

