
Precise Scheduling of Mixed-Criticality Tasks on Varying-Speed
Multiprocessors

Tianning She
∗

Texas State University

USA

Sudharsan Vaidhun
∗

University of Central Florida

USA

Qijun Gu

Texas State University

USA

Sajal K. Das

sdas@mst.edu

Missouri Univ. of Science and Tech.

USA

Zhishan Guo

zsguo@ucf.edu

University of Central Florida

USA

Kecheng Yang

yangk@txstate.edu

Texas State University

USA

ABSTRACT
In conventional real-time systems analysis, each system parameter

is specified by a single estimate, which must pessimistically cover

the worst case. Mixed-criticality (MC) design has been proposed to

mitigate such pessimism by providing a single system parameter

with multiple estimates, which often lead to low-critical and high-

critical modes. Themajority of the works onMC scheduling is based

on the approach that low-critical workloads are (fully or partially)

sacrificed at the transition instant from low- to high-critical mode.

Recently, another approach called precise MC scheduling has been
investigated, where no low-critical workload is sacrificed at the

mode switch, but instead a processor speed boosting is committed.

In this paper, we extend the work on uniprocessor preciseMC sched-

uling to multiprocessor platforms. To tackle this new scheduling

problem, we propose two novel algorithms based on the virtual-

deadline and fluid-scheduling approaches. For each approach, we

present a sufficient schedulability test and prove its correctness. We

also evaluate their effectiveness theoretically with speedup bounds

and approximation factors as well as experimentally via randomly

generated task sets.

CCS CONCEPTS
• Computer systems organization→ Real-time systems.

KEYWORDS
precise scheduling, mixed-criticality systems, varying-speed plat-

form, virtual deadlines, fluid scheduling.

ACM Reference Format:
Tianning She, Sudharsan Vaidhun, Qijun Gu, Sajal K. Das, Zhishan Guo,

and Kecheng Yang. 2021. Precise Scheduling of Mixed-Criticality Tasks on

Varying-Speed Multiprocessors. In 29th International Conference on Real-
Time Networks and Systems (RTNS’2021), April 7–9, 2021, NANTES, France.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3453417.3453428

∗
Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

RTNS’2021, April 7–9, 2021, NANTES, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9001-9/21/04. . . $15.00

https://doi.org/10.1145/3453417.3453428

1 INTRODUCTION
In the era of multi-core and many-core platforms and commercial-

off-the-shelf processors, the gap between average-case and worst-

case performance of a task is growing rapidly. Under such a trend,

in order to guarantee the worst-case temporal correctness of a

system, one approach is to allocate computing resources according

to the most pessimistic system assumptions (or models), at the

cost of significant resource under-utilization during run-time. To

mitigate such pessimism, the mixed-criticality (MC) paradigm has

been proposed in real-time systems design. In an MC or Multi-

Model System [14], a set of tasks with different criticalities shares

the same platform, and various levels of guarantees are provided

under different system assumptions. The classical Vestal MC Model

[34] separates the timing assumptions by setting multiple worst-

case execution time (WCET) estimates for each high-critical task,

while under each assumption, it is guaranteed that tasks with the

corresponding or higher criticality levels will meet their deadlines.

To provide the desired guarantees under more pessimistic as-

sumptions, a common practice in MC is to degrade the service to

tasks of lower criticality levels, and define system-wide execution

modes. By providing no or partial guarantee, such as imprecise

mixed-criticality that allows graceful degradation of low-criticality

tasks in high-criticality mode [3, 15, 31] upon mode switches, the

computing capacities can be freed up to handle extra demands from

higher criticality tasks. However, current industrial practices re-

quire that low-critical tasks should receive full service guarantees,

and also no degradation is allowed as they are not “non-critical.”

As a result, the concept of precise mixed-criticality model [13] has

been proposed recently, which guarantees the execution of all low-

criticality tasks under all modes/assumptions.

Now an important question is: without sacrificing low-critical

tasks, how can we provide guarantees to additional requirements

from high-critical tasks upon mode switch? Due to the recent ad-

vances in hardware and operating systems, techniques like dynamic

voltage and frequency scaling (DVFS), make it straightforward to

adjust the processing speeds of computing platforms. We believe

that by increasing the processor speed, when necessary, one can

handle additional computing requirements from high-critical tasks

without sacrificing low-critical ones. While most existing MC de-

signs including the ones on varying-speed platforms (e.g., [7, 8, 26])
provide no guarantees to low-critical tasks, a breakthrough work

due to Bhuiyan et al. [13] combines the precise scheduling of (spo-

radic implicit-deadline) MC tasks with varying speed platform.

https://doi.org/10.1145/3453417.3453428
https://doi.org/10.1145/3453417.3453428

RTNS’2021, April 7–9, 2021, NANTES, France Tianning She, Sudharsan Vaidhun, Qijun Gu, Sajal K. Das, Zhishan Guo, and Kecheng Yang

Under a dual-criticality setting, the authors proposed to minimize

the processor speed under less pessimistic WCET assumptions,

while guaranteeing that deadlines are met under all circumstances

by increasing the processor speed to the maximum possible value

upon mode switch triggered by high-critical task’s overrun. The

works in [13] and [35] proposed virtual deadline based on earliest

deadline first (EDF), and fluid-rate based approaches for precise

scheduling of MC tasks on uniprocessor platforms, respectively.

The precise MC model has two significant benefits. First, it pro-

vides full service guarantees to both high- and low-criticalility tasks

under all circumstances. Second, with multi-mode settings, when

the less pessimistic assumptions are fulfilled, the platform can exe-

cute at a lower speed, leading to energy efficiency that often plays

an important role in embedded system design. This paper focuses on
precise scheduling of MC tasks upon varying-speed multiprocessors,
by combining precise computing and DVFS-based energy conservation
on a preemptive identical multiprocessor platform.

Contributions. To the best of our knowledge, this is the first work
that tackles the precise MC scheduling with varying processor

speed on a multiprocessor platform. Specifically, this work

• presents a new MC system model and formalizes a new MC

scheduling problem;

• proposes a new virtual-deadline based scheduler fpEDF-VD
and a sufficient schedulability test for it;

• proves a speedup bound
4m
m+1 < 4.0 for fpEDF-VD, wherem

is the number of processors;

• develops an alternative algorithm based on the fluid-scheduling

approachMCF-FR, which offers a closed form schedulability

test with a proven approximation ratio;

• conducts empirical schedulability experiments to demon-

strate and compare the effectiveness of proposed approaches.

Organization.The rest of the paper is organized as follows. Section
2 describes the system model and our targeted scheduling problem.

Section 3 presents fpEDF-VD scheduler and proves its schedulabil-

ity test and speedup bound. Focusing on an alternative fluid-based

scheduling framework, Section 4 presents a polynomial-time al-

gorithm MCF-FR and derives an approximation ratio. Section 5

compares the proposed approaches with state-of-the art methods

via randomly generated task sets. Section 6 reviews related work

while Section 7 concludes the paper with future research directions.

2 MODEL AND PROBLEM STATEMENT
Let τ = {τ1,τ2, · · · ,τn } be a set of n implicit-deadline sporadic

MC tasks. Each task, specified by a 3-tuple τi = (Ti ,C
L
i ,C

H
i), re-

leases a (potentially infinite) sequence of jobs with a minimum

release separation of Ti time units; and every job has an absolute

deadline Ti time units after its release. The worst-case execution

requirement of task τi , defined by the worst-case execution time on

a unit-speed processor, is estimated a two criticality levels: a low-

criticality estimate CL
i and a high-criticality estimate CH

i , where it

is assumed that CL
i ≤ CH

i ,∀i . Besides, CL
i (respectively, CH

i) is also

the execution requirement budgets of task τi in the L (respectively,

H)-mode, to be described later. In particular,CL
i < CH

i indicates that

τi is a hi-criticality task that may trigger a system mode switch,

whereas CL
i = C

H
i indicates that τi is a lo-criticality task that can-

not trigger any system mode switch. Let the jth job of task τi be
denoted as Ji, j . In this paper, we assume that the preemption and

migration overheads e.g., due to memory interference are negligible.

(Equivalently, we assume such overheads are pessimistically taken

into account in the execution requirements estimates.)

Varying-speed multiprocessor and mode switch.We consider

the problem of scheduling the set of tasks τ onm energy-conserving

processors that can operate at a degraded or full speed. All them
processors begin with a degraded speed ρ < 1.0, which indicates

that any workload being executed under this speed for t time units

is equivalent to that under a unit-speed processor for ρ × t time

units. During runtime, the amount of workload completed for each

job is being monitored. If any job Ji, j has cumulatively executed

for a workload of CL
i under degraded processing speed ρ (thus

receiving a cumulative actual execution time of CL
i /ρ units) but

still requires further execution, the system is immediately notified,

and all them processors start to perform its full speed 1.0 from that

instance. We call this moment as the time instant of mode switch,
from the L-mode (where the processor speed is ρ) to the H-mode

(where the processor speed becomes 1.0). The system can recover

to the L-mode once all processors become idle.

Note that, in contrast to the majority of existing works on MC

scheduling, no task is entirely or partially dropped upon a mode

switch, and every job meets its absolute deadline in any system

mode. The difference between the two execution requirement bud-

gets upon mode switch, i.e., CH
i −C

L
i , is compensated by the speed

upgrade. Furthermore, any job Ji, j that has cumulatively executed

for a workload of CH
i yet still not completed, is considered as erro-

neous and would be terminated. That is, only hi-criticality tasks,

for which CL
i < CH

i , could trigger a mode switch.

We denote the utilization of a task τi in L- and H-modes, respec-

tively, by

uLi =
CL
i
Ti

and uHi =
CH
i
Ti
.

Since CL
i = CH

i holds for every lo-criticality task, it also holds

uLi = u
H
i for such task. We further denote the total utilization of all

tasks in L- and H-modes, respectively, by

U L =
∑
i
uLi and UH =

∑
i
uHi .

Let us define uL
max
= maxi {u

L
i } and u

H
max
= maxi {u

H
i }.

Problem Statement. We address the problem of scheduling the

MC tasks onm varying-speed processors to guarantee all deadlines

are met in all scenarios with the following additional requirements

on processor execution speed:

• all processors must only operate at their energy-conserving

speed ρ if all jobs finish within their CL
i budget;

• the processors may operate at full speed 1.0 if a any hi-

criticality job executes beyond its CL
i budget (yet finishes

within its CH
i budget).

Optimizing the energy-conserving speed (ρ).Given the schedu-
lability problem as stated above, the problem of optimizing the

required energy-conserving speed can be addressed by applying

Precise Scheduling of Mixed-Criticality Tasks on Varying-Speed Multiprocessors RTNS’2021, April 7–9, 2021, NANTES, France

the schedulability tests for ρ ∈ [0, 1] in a binary-search fashion.

However, due to the fact that our schedulability tests are sufficient

but not necessary, this method will result in the minimum value of

ρ for passing our schedulability tests — it might be larger than the

minimum feasible value of ρ that can be potentially achieved by a

better scheduler and/or better schedulability analysis. To empha-

size on the schedulability analysis, in the rest of this paper, we will

focus on the problem of determining the schedulability for given

constant energy-conserving speed, ρ.

3 SCHEDULING BY VIRTUAL DEADLINES
To solve the aforementioned problem, this section proposes a new

scheduler based on the virtual-deadline approach and presents our

first algorithm, called fpEDF-VD. We prove a sufficient schedu-

lability test for fpEDF-VD for the precise MC scheduling on m
varying-speed processors, and show that fpEDF-VD has a speedup

bound
4m
m+1 < 4.0.

3.1 Algorithm fpEDF-VD
The proposed scheduler combines two existing approaches, namely

fpEDF and EDF-VD, which are first summarized below.

Algorithm fpEDF. Based on the global EDF scheduler, Baruah [10]

developed fpEDF by statically prioritizing high-utilization tasks for

which the utilization exceeds 0.5. It assumesm identical unit-speed

processors satisfy the following sufficient schedulability test.

Theorem 3.1 (Theorem 4 in [10]). Let Usum denote the total
utilization of an arbitrary sporadic task set, in which the utilization
of task τi is denoted by ui . This task set is schedulable by fpEDF on
m identical unit-speed processors if

∀i,ui ≤ 1.0 and Usum ≤
m + 1

2

.

Algorithm EDF-VD. To address the problem of uniprocessor MC

scheduling under Vestal’s model [34], EDF-VD algorithm [1, 11]

was proposed. In EDF-VD, each hi-critical task is assigned a virtual
deadline that is smaller than its actual deadline to promote the

execution of hi-critical tasks in the L-mode and to leave slack for

the potential extra workload upon a mode switch to H-mode. EDF-
VD has two phases. In the pre-processing phase, a scaling factor x is

calculated and used to determine the virtual deadlines for hi-critical

tasks by T̂ ′i = x ·Ti . For lo-critical tasks, their virtual deadlines are
set identical to their actual deadlines, i.e., Ti . In the runtime phase,

the system starts with the L-mode and the tasks are scheduled

according to EDF by their virtual deadlines. When a hi-critical task

overrun its lo-critical execution time estimate, the system switch

to H-mode. At the mode switch, all lo-critical tasks are dropped (or

scheduled in the background) and hi-critical tasks are scheduled

by their actual deadlines henceforth.

Algorithm fpEDF-VD. Leveraging fpEDF and EDF-VD, our novel
algorithm, called fpEDF-VD, also has two phases. In the pre-processing
phase (described in Algorithm 1), both the hi-critical and lo-critical

tasks are assigned a virtual deadline by the scaling factor. This is

because in precise MC scheduling, lo-critical tasks are not dropped

at the mode switch and therefore we also need the virtual deadlines

to control their carry-over behaviors upon a mode switch. In the

Algorithm 1: Pre-processing Phase of Algorithm fpEDF-VD.

For a dual-criticality task-set τ = {τ1,τ2,,τn } to be

scheduled onm energy-conserving preemptive processors,

each of which has energy-conserving speed ρ and full speed

1.0:

• Determine virtual deadline of all tasks by computing the

scaling factor x :

x ← max

(
uL
max

ρ
,

U L

m+1
2

ρ

)
(1)

• If max

(
uL
max

ρ ,
U L
m+1
2

ρ

)
+max

(
uH
max
, U

H
m+1
2

)
≤ 1

then set virtual-deadline T̂i ← x ·Ti for each task τi ,
and return SUCCESS;

Else return FAILURE.

Algorithm 2: Runtime Phase for Algorithm fpEDF-VD.

If the pre-processing phase returns SUCCESS, then fpEDF-VD
schedules tasks during runtime as follows:

• In the L-mode, fpEDF-VD schedules tasks by their virtual

deadlines onm speed-ρ processors.

It is equivalent to scheduling the task set {(T ′i , C
′
i)}

n
i=1

onm unit-speed processors, where T ′i = xTi and
C′i = C

L
i /ρ for every task τi ,

Then, task set {(T ′i , C
′
i)}

n
i=1 is scheduled by fpEDF where

tasks for which C′i /T
′
i > 0.5 are considered high-utilization.

• In the H-mode, fpEDF-VD schedules the tasks’ actual

deadlines onm unit-speed processors.

It is equivalent to scheduling the task set {(T ′′i , C
′′
i)}

n
i=1

onm unit-speed processors, where T ′′i = (1 − x)Ti and
C′′i = C

H
i for every task τi ,

Then, task set {(T ′′i , C
′′
i)}

n
i=1 is scheduled by fpEDF where

tasks for which C′′i /T
′′
i > 0.5 are considered high-utilization.

runtime phase (described in Algorithm 2), the tasks are mapped to

a set of non-MC sporadic tasks in the L- and H-mode, respectively,

to apply fpEDF in each mode. In other words, we have two map-

pings from the MC tasks to non-MC sporadic tasks, and upon a

mode switch, fpEDF is re-launched with respect to a different set

of non-sporadic tasks.

3.2 Schedulability Test
We now derive a sufficient schedulability test for fpEDF-VD in

Theorem 3.4, which is based on two lemmas. First, a sufficient

schedulability test and its correctness in the L-mode is established

by the following lemma.

Lemma 3.2. All tasks meet their virtual deadlines in the L-mode
under fpEDF-VD if

x ≥
uL
max

ρ
and x ≥

U L

m+1
2

ρ
.

RTNS’2021, April 7–9, 2021, NANTES, France Tianning She, Sudharsan Vaidhun, Qijun Gu, Sajal K. Das, Zhishan Guo, and Kecheng Yang

Proof. As shown in Algorithm 2, all tasks in the L-mode are

mapped to {(T ′i ,C
′
i)}, which are scheduled by fpEDF. By Theo-

rem 3.1, if ∀i, C ′iT ′i ≤ 1 and

∑
i
C ′i
T ′i
≤ m+1

2
, then all tasks in {(T ′i ,C

′
i)}

must meet their deadlines, i.e., all MC tasks in τ must meet their

virtual deadlines in the L-mode. Additionally, we have

∀i, C
′
i

T ′i
≤ 1⇔ ∀i, C

L
i /ρ

xTi
≤ 1⇔ ∀i,uLi ≤ xρ ⇔ x ≥

uL
max

ρ
,

and

∑
i

C ′i
T ′i
≤

m + 1

2

⇔
∑
i

CL
i /ρ

xTi
≤

m + 1

2

⇔
U L
i

xρ
≤

m + 1

2

⇔ x ≥
U L

m+1
2

ρ
.

Thus, the lemma follows. ■

Next, a sufficient schedulability test and its correctness in the

H-mode is shown by the following lemma.

Lemma 3.3. All tasks meet their actual deadlines in the H-mode
under fpEDF-VD if

x ≤ 1 − uH
max

and x ≤ 1 −
UH

m+1
2

.

Proof. We first prove that it is safe to map the task set τ in the H-
mode to the task set {(T ′′i ,C

′′
i)} by treating the time instant of mode

switch, t∗, as the typical “last-idle instant” in EDF schedulability

analysis. To this end, note that for the jobs released in the L-mode,

any job with a virtual deadline before t∗ must have completed by

t∗ (by Lemma 3.2) while any job with a virtual deadline at or after

t∗ must have its deadline at least (1 − x)Ti = T
′′
i time units after t∗

(safely assuming that it has not received any execution during L-

mode, which is the worst-case from H-mode perspective). Whereas,

for jobs released in the H-mode, its deadline is at Ti time units

after its release (even further apart). Meanwhile, every job of task

τi cannot execute for more than CH
i = C ′′i in any scenario. Thus,

it is sufficient to model the behavior of the MC task set τ in the

H-mode as a simple sporadic task set {(T ′′i ,C
′′
i)}, and therefore this

mapping is safe.

Given this mapping and {(T ′′i ,C
′′
i)} is scheduled by fpEDF (The-

orem 3.1), we conclude that if ∀i, C ′′iT ′′i ≤ 1 and

∑
i
C ′′i
T ′′i
≤ m+1

2
, then

all tasks in {(T ′′i ,C
′′
i)} must meet their deadlines, i.e., all MC tasks

in τ must meet their actual deadlines in the H-mode. We also have

∀i, C
′′
i

T ′′i
≤ 1⇔ ∀i, CH

i
(1 − x)Ti

≤ 1⇔ ∀i,uHi ≤ 1−x ⇔ x ≤ 1−uH
max
,

and

∑
i

C ′′i
T ′′i
≤

m + 1

2

⇔
∑
i

CH
i

(1 − x)Ti
≤

m + 1

2

⇔
UH
i

1 − x
≤

m + 1

2

⇔ x ≤ 1 −
UH

m+1
2

.

Thus, the lemma follows. ■

Lemmas 3.2 and 3.3 lead to a sufficient schedulability test for

fpEDF-VD as follows.

Theorem 3.4. fpEDF-VD correctly schedules a dual-criticality
task-set τ = {τ1,τ2, ...,τn } onm energy-conserving preemptive pro-
cessors, each with energy-conserving speed ρ and max speed 1.0, if

max

(
uL
max

ρ
,

U L

m+1
2

ρ

)
+max

(
uH
max
,
UH

m+1
2

)
≤ 1. (2)

Proof. By the assignment of x in expression (1), we have

x = max

(
uL
max

ρ
,

U L

m+1
2

ρ

)
.

Therefore, x ≥
uL
max

ρ and x ≥ U L
m+1
2

ρ
. Also, by inequality (2), x < 1.

Thus, in the L-mode, by Lemma 3.2, all virtual deadline and hence

all actual deadlines are met under fpEDF-VD.
Again, by inequality (2), we have

x ≤ 1 −max

(
uH
max
,
UH

m+1
2

)
,

which implies

x ≤ 1 − uH
max

and x ≤ 1 −
UH

m+1
2

.

Thus, in the H-mode, by Lemma 3.3, all actual deadlines are met

under fpEDF-VD. Hence the theorem. ■

3.3 Speedup Bound
This section derives a speedup bound (defined below) for fpEDF-VD.

Speedup bound.An algorithmA having a speedup bound s means

that any system that is schedulable by a potentially optimal algo-

rithm onm energy-conserving processors with degraded speed ρ
and full speed 1.0 for each processor, must also be schedulable by

algorithm A onm energy-conserving processors with degraded

speed ρ ·s and full speed s for each processor.

Lemma 3.5. Any system that is schedulable by a potentially opti-
mal algorithm onm energy-conserving processors with degraded speed
m+1
4m ρ and full speed m+1

4m for each processor must also be schedula-
ble by algorithm fpEDF-VD onm energy-conserving processors with
degraded speed ρ and full speed 1.0 for each processor.

Proof. To be schedulable even by an optimal scheduler, any

individual task’s utilization must be at most the speed of a single

processor in both L- and H-mode, i.e.,

∀i,uLi ≤
m + 1

4m
ρ ⇒ uL

max
≤

m + 1

4m
ρ,

and ∀i,uHi ≤
m + 1

4m
⇒ uH

max
≤

m + 1

4m
.

Furthermore, to be schedulable even by an optimal scheduler, the

sum of utilization of all tasks must be at most the sum of all proces-

sors’ speed in both L- and H-modes, i.e.,

U L ≤
m + 1

4m
ρ ·m,

andUH ≤
m + 1

4m
·m.

Precise Scheduling of Mixed-Criticality Tasks on Varying-Speed Multiprocessors RTNS’2021, April 7–9, 2021, NANTES, France

Therefore,

max

(
uL
max

ρ
,

U L

m+1
2

ρ

)
+max

(
uH
max
,
UH

m+1
2

)
≤ max

(
m+1
4m ρ

ρ
,
m+1
4m ρ ·m
m+1
2

ρ

)
+max

(
m + 1

4m
,
m+1
4m ·m
m+1
2

)
= max

(
m + 1

4m
,
1

2

)
+max

(
m + 1

4m
,
1

2

)
=
1

2

+
1

2

, becausem ≥ 1

= 1 (3)

From expression (3) and Theorem 3.4, we conclude that this task

set is schedulable by fpEDF-VD onm energy-conserving processors

with degraded speed ρ and full speed 1.0 for each processor. Hence

the lemma follows. ■

By re-defining a unit of speed (scaling up the value of all speed

parameters by multiplying
4m
m+1), Lemma 3.5 can be re-written as

Any system schedulable by some (potentially optimal)

algorithm onm energy-conserving processors with

degraded speed ρ and full speed 1.0 for each processor,
must also be schedulable by algorithm fpEDF-VD on

m energy-conserving processors with degraded speed

4m
m+1ρ and full speed

4m
m+1 for each processor.

This, by definition, yields a speedup bound for fpEDF-VD as:

Theorem 3.6. Algorithm fpEDF-VD has a speedup bound 4m
m+1 .

Since ∀m, 4m
m+1 < 4.0, the following corollary is immediate.

Corollary 3.7. Algorithm fpEDF-VD has a speedup bound 4.0.

4 FLUID SCHEDULING
In this section, we focus on an alternative approach based on the

concept of fluid scheduling. In fluid scheduling, each task may re-

ceive a fraction of a processor, so that all tasks may progress at

specific rates simultaneously even if the number of tasks exceeds

the number of available processors. It is required for such rates

that (i) the summation of the rates of all tasks does not exceed

the platform capacity (i.e., the product of the number of proces-

sors and the individual processor speed), and (ii) the rate of each
individual task does not exceed the speed of an individual proces-

sor. Admittedly, the notion of all tasks progressing simultaneously

at constant executing rates is theoretical and idealistic. However,

such simultaneous progression can be implemented by slicing the

timeline to smaller pieces or by certain fairness based scheduling

algorithms (e.g., DP-Fair [30]), which has been successfully adapted

to implement fluid scheduling for MC tasks [29].

When it comes to MC scheduling, the dual-rate fluid scheduling
1

is often considered, where each task τi is assigned two constant

execution rates in L- and H-modes, denoted by θLi and θHi , respec-

tively. Specifically, for each lo-criticality task, a constant execution

1
The conventional fluid scheduling assumes a single constant rate for each task,

whereas two rates (i.e., one rate change for each task) have been proposed in the

context of MC scheduling [6, 29]. Fluid scheduling with no restriction on the number

of rate changes can be too general. For example, any actual schedule can be viewed as

a fluid schedule where the rate for each task switches between 0 and 1.0.

Figure 1: Relation between fluid execution rate and cumula-
tive execution over time of a task under MCF framework.

speed of θi = ui would be sufficient under both modes. By contrast,

for a hi-criticality task, it would require a speed larger than its

lo-utilization in the L-mode (to create sufficient gap after the mode

switch to accommodate the additional execution requirement) and

an even larger speed after the mode switch. Such a relationship is

illustrated in Figure 1, where the blue line indicates lo-criticality

task setting and the red line represents hi-criticality task settings.

4.1 A Fluid Assignment and Execution Scheme
Let us now present an approach to find a feasible execution rate

assignment {(θLi ,θ
H
i)}

n
i=1 by restricting the ratio between the L-

mode and the H-mode to be the same among all hi-criticality tasks.

That is, each task τi is assigned an execution speed of θHi = θi in

the H-mode and a speed of θLi = λ · θi in the L-mode, where λ ≥ 0.

The ratio θLi /θ
H
i = λ for all i; while for each lo-criticality task, we

assign a constant execution speed of θi = ui under both modes.

Recall that we have simplified notations for per-mode utilization:

U L =
∑
i
uLi and UH =

∑
i
uHi .

Similarly, lettingTlo andThi denote the set of lo-criticality andhi-

criticality tasks, respectively, we define per-mode total utilization

for Tlo and Thi as follows:

U L
lo
=

∑
τi ∈Tlo

uLi =
∑

τi ∈Tlo

uHi = U
H
lo
,

U L
hi
=

∑
τi ∈Thi

uLi and UH
hi
=

∑
τi ∈Thi

uHi .

Algorithm 3 describes the proposed algorithm MCF-FR to select

the proper λ and θi values for any given precise MC task system.

The schedulability directly depends on whether the resulting λ can

be upper bounded by the degraded speed ρ. Clearly,MCF-FR and

its schedulability test runs in linear (polynomial) time with respect

to the number of tasks. Note that it is a sufficient only algorithm

to solve the dual-rate fluid scheduling problem, i.e., there exists

systems for whichMCF-FR returns FAILURE while feasible dual-

rate assignments may still exist.

Note that, the assignment of λ by Eq. (4) in Algorithm 3 suffi-

ciently guarantees that 0 < λ ≤ 1 becauseUH ≤ m and ∀i, uHi ≤ 1

must hold; otherwise, the deadlines cannot be guaranteed by any

algorithm due to over-utilization.

RTNS’2021, April 7–9, 2021, NANTES, France Tianning She, Sudharsan Vaidhun, Qijun Gu, Sajal K. Das, Zhishan Guo, and Kecheng Yang

Algorithm 3: Algorithm MCF-FR.

For a dual-criticality task-set τ = {τ1,τ2,,τn } to be

scheduled onm energy-conserving preemptive processors,

each having energy-conserving speed ρ and max speed 1.0:

• A system-wide parameter λ and per-task parameters θi are
computed as:

λ = max

{
U L

m +U L −UH ,max

i

{
uLi

1 + uLi − u
H
i

}}
(4)

∀τi ∈ Thi, θi =
uLi
λ
+ uHi − u

L
i (5)

• If the energy-conserving speed λ ≤ ρ
then each hi-criticality task τi is to be executed at fluid

rate θLi = λ · θi in the L-mode and at fluid rate θHi = θi
in the H-mode, while each lo-criticality task is to be

executed at fluid rate θLi = θ
H
i = u

L
i in both modes,

and return SUCCESS;
Else return FAILURE.

4.2 Correctness Guarantee
In the following, we show that by selecting λ and θi according to
MCF-FR in Algorithm 3, if λ ≤ ρ, then the system is schedulable

underMCF-FR.
According to Lemmas 4.1, 4.2, and 4.3, we first show that the

resulted fluid rates byMCF-FR must be valid. That is, in either L-

or H-mode, the assigned rate to every task must not exceed the

speed of an individual processor, and the total assigned rates to all

tasks must not exceed the sum of all processors’ speed.

Lemma 4.1. If MCF-FR returns SUCCESS, then

∀i : 1 ≤ i ≤ n, θLi ≤ ρ and θHi ≤ 1.0.

Proof. For lo-criticality tasks, θLi = θHi = uLi . By Eq. (4), it is

clear that λ ≥ uLi ,∀i . Also, MCF-FR as described in Algorithm 3

returning SUCCESS implies that λ ≤ ρ. Therefore, this lemma

holds for any lo-criticality task.

In the rest of this proof, we focus on an arbitrary hi-criticality

task τi , and note that Eq. (4) in Algorithm 3 implies that

∀τi ∈ Thi, λ ≥
uLi

1 + uLi − u
H
i
. (6)

Then, by Eq. (5) we have

θHi =
uLi
λ
+ uHi − u

L
i

≤
uLi
uLi

1+uLi −u
H
i

+ uHi − u
L
i {by Eq. (6)}

= 1 + uLi − u
H
i + u

H
i − u

L
i

= 1,

and also have

θLi = λ · (
uLi
λ
+ uHi − u

L
i)

= uLi + λ · u
H
i − λ · u

L
i

=
uLi

1 + uLi − u
H
i
· (1 + uLi − u

H
i) + λu

H
i − λu

L
i

≤ λ · (1 + uLi − u
H
i) + λu

H
i − λu

L
i {by Eq. (6)}

= λ

≤ ρ. {becauseMCF-FR returns SUCCESS}

Thus, the lemma follows. ■

Lemma 4.2. If MCF-FR returns SUCCESS, then
∑
i θ

L
i ≤ ρ ·m.

Proof. First of all, we have the following equality.∑
i
θLi =

∑
τi ∈Tlo

θLi +
∑

τi ∈Thi

θLi

=
∑

τi ∈Tlo

uLi +
∑

τi ∈Thi

(
λ · (

uLi
λ
+ uHi − u

L
i)

)
= U L

lo
+U L

hi
+ λ · (UH

hi
−U L

hi
)

= U L + λ · (UH
hi
−U L

hi
)

Then, by Eq. (4) in Algorithm 3, we have

λ ≥
U L

m +U L −UH ⇒ U L ≤ λ · (m +U L −UH).

Therefore, we have the following inequality.∑
i
θLi ≤ λ · (m +U L −UH) + λ · (UH

hi
−U L

hi
)

= λ · (m +U L −UH +UH
hi
−U L

hi
)

= λ · (m + (U L −U L
hi
) − (UH −UH

hi
))

= λ · (m +U L
lo
−UH

lo
)

= λ ·m {becauseU L
lo
= UH

lo
}

≤ ρ ·m {becauseMCF-FR returns SUCCESS}

Thus, the lemma follows. ■

Lemma 4.3. If MCF-FR returns SUCCESS, then
∑
i θ

H
i ≤ m.

Proof. First of all, we have the following equality.∑
i
θHi =

∑
τi ∈Tlo

θHi +
∑

τi ∈Thi

θHi

=
∑

τi ∈Tlo

uLi +
∑

τi ∈Thi

(
uLi
λ
+ uHi − u

L
i)

= U L
lo
+
U L
hi

λ
+UH

hi
−U L

hi

≤
U L
lo

λ
+
U L
hi

λ
+UH

hi
−U L

hi
{because 0 < λ ≤ 1}

=
U L

λ
+UH

hi
−U L

hi

Precise Scheduling of Mixed-Criticality Tasks on Varying-Speed Multiprocessors RTNS’2021, April 7–9, 2021, NANTES, France

Then, by Eq. (4) we have

λ ≥
U L

m +U L −UH .

Therefore, ∑
i
θHi ≤

U L

U L

m+U L−U H

+UH
hi
−U L

hi

= m +U L −UH +UH
hi
−U L

hi

= m + (U L −U L
hi
) − (UH −UH

hi
)

= m +U L
lo
−UH

lo

= m,

where the last step is because U L
lo
= UH

lo
. Thus, the lemma follows.

■

The following lemma shows thatMCF-FR correctly schedules

all hi-criticality tasks.

Lemma 4.4. In MCF-FR, by assigning execution rate via Eq. (5),
each hi-criticality task will receive enough execution by its deadline.

Proof. For any hi-criticality task τi , any of its jobs must be in

one of three following cases.

Case A: the system stays in L-mode during its scheduling window.2

In this case, it suffices to show that θLi ≥ uLi :

θLi = λθi

= λ(
uLi
λ
+ uHi − u

L
i) {by Eq. (5)}

= uLi + λ(u
H
i − u

L
i)

≥ uLi {since uHi − u
L
i ≥ 0}.

Case B: the system stays in H-mode during its scheduling window.
In this case, it suffices to show that θHi ≥ uHi :

θHi = θi

=
uLi
λ
+ uHi − u

L
i {by Eq. (5)}

= uHi +
1 − λ

λ
uLi

≥ uHi {since 0 ≤ λ ≤ 1}.

Case C: there is a mode switch (L to H) in its scheduling window.
In this case, the task is executed at a degraded speed θLi before

the mode switch and then at a faster speed θHi at and after the

mode switch time instant. Let r denote the release time of this job

of interest and let t = r + (CL
i /θ

L
i). If the mode switch happens after

time t , then this job must have finished by the mode switch (thus by

its deadline). Otherwise, the mode switch must be triggered earlier

at time t when it has cumulatively executed forCL
i but not finished.

Therefore, in the rest of this proof, we focus on the scenario that

the mode switch happens at or before time t . Since θHi ≥ θLi , the
later mode switch occurs, the less commutative execution this job

can receive within its scheduling window (of fixed total length of

2
The scheduling window of a job is defined by the time interval from its release time

to its absolute deadline.

Ti). Thus, it suffices to consider just the worst-case situation when

mode switch happens exactly at time t . In this worst-case scenario,

the deadline of the job of interest must be met if

t +
CH
i −C

L
i

θHi
≤ r +Ti ⇔

CL
i

θLi
+
CH
i −C

L
i

θHi
≤ Ti .

This is mathematically implied by the fluid rate assignment accord-

ing to Eq. (5) in Algorithm 3 as follows:

θi =
uLi
λ
+ uHi − u

L
i ⇒ θi =

CL
i

λ ·Ti
+
CH
i −C

L
i

Ti

⇒Ti =
CL
i

λ · θi
+
CH
i −C

L
i

θi

⇒Ti =
CL
i

θLi
+
CH
i −C

L
i

θHi
.

Combining all three cases, the lemma follows. ■

The following theorem establishes the correctness of our schedu-

lablility test for algorithmMCF-FR.

Theorem 4.5. IfMCF-FR returns SUCCESS, then the fluid rate
assignment byMCF-FR must be valid and all deadline must be met
under MCF-FR in both L- and H-modes.

Proof. By Lemmas 4.1, 4.2, and 4.3, the fluid rate assignment

by MCF-FR must be valid. Furthermore, Lemma 4.4 shows that all

deadlines of hi-criticality tasks must be met underMCF-FR in both

L- and H-modes.

Moreover, all deadlines of lo-criticality tasks must be met under

MCF-FR in both L- and H-modes since each lo-criticality task does

not change behaviors between the two modes and is assigned a

sufficient constant execution rate θLi = θ
H
i = ui .

Thus, the theorem follows. ■

4.3 Approximation Ratio Bound
The following theorem establishes an approximation ratio forMCF-
FR, where an approximation ratio α is defined as: any system that

is schedulable under some (potential optimal) algorithm with de-

graded speed ρ∗ must also be schedulable by MCF-FR with de-

graded speed ρ such that
ρ
ρ∗ ≤ α . Clearly α ≥ 1; the smaller the

α , the closer is the approximation to the optimality. Note that the

difference between this approximation ratio and a speedup bound
is that, the full speed remains the same (1.0) with respect to both

the approximate algorithm and the optimal algorithm.

Theorem 4.6. Algorithm MCF-FR has an approximation ratio no
greater than

max

{
m

m +U L −UH ,max

i

{
1

1 + uLi − u
H
i

}}
.

Proof. By Eq. (4), a system will be schedulable underMCF-FR
given the degraded speed

ρ = λ = max

{
U L

m +U L −UH ,max

i

{
uLi

1 + uLi − u
H
i

}}
. (7)

RTNS’2021, April 7–9, 2021, NANTES, France Tianning She, Sudharsan Vaidhun, Qijun Gu, Sajal K. Das, Zhishan Guo, and Kecheng Yang

On the other hand, for a system to be schedulable even under an

optimal scheduling algorithm, the degraded speed ρ∗ must satisfy

m · ρ∗ ≥ U L
(8)

for the system not being overutilized in the L-mode.

Furthermore, it is also necessary to have a sufficient degraded

speed that is at least any individual task’s lo-utilization for being

schedulable even under an optimal scheduling algorithm. This is

because any individual sequential task cannot be simultaneously

executed on multiple processors. That is,

ρ∗ ≥ uLi (9)

Therefore, by (7), (8), and (9), we have

ρ

ρ∗
= max

{
U L

ρ∗ · (m +U L −UH)
,max

i

{
uLi

ρ∗ · (1 + uLi − u
H
i)

}}
≤ max

{
m

m +U L −UH ,max

i

{
1

1 + uLi − u
H
i

}}
.

The theorem follows. ■

5 EXPERIMENTAL EVALUATION
This section evaluates the proposed virtual-deadline based algo-

rithm fpEDF-VD as well as the dual-rate fluid scheduling algorithm

MCF-FR via schedulability ratio on randomly generated task sets.

Workload generation. The implicit deadline sporadic MC task

sets are generated randomly using a procedure adopted from [21].

The parameters controlling the workload generation are as follows:

• m ∈ [2, 4, 8] is the number of cores in the system.

• ρ ∈ [0.3, 0.5, 0.7, 0.9] is processor’s energy-conserving speed.
• Ubound is the relative utilization given byUH /m, whereUH

is the total utilization of the system in hi-criticality mode.

• The lo-criticality execution time for each task is randomly

chosen in the range [Cdown ,Cup].
• The lo-criticality utilization for each task is randomly chosen

in the range [uHi /R,u
H
i] where R is the upper bound on the

ratio of hi-criticality to lo-criticality utilization.

• P : Probability that the chosen task is hi-critical; 0 ≤ P ≤ 1

The values of workload generation parameters are Cdown = 1,

Cup = 100, R = 4, and P = 0.5. The time period and hi-criticality

execution time for each task is obtained from lo-criticality exe-

cution time and lo-criticality utilization of the respective tasks.

The task sets are generated by iteratively adding tasks to the sys-

tem whose parameters are randomly sampled from their ranges,

until the task set reaches the desired relative utilization, Ubound .
Although the workload generation procedure is randomized, due

to the dependent nature of some parameters, the workload might

not be completely random so as to meet the workload generation

requirements. For evaluation, the total utilization of the workload is

normalized to the number (m) of cores and represented asUbound ,
which represents the per-core utilization. The evaluation metric is

the ratio of task sets that meet the schedulability requirements of

each algorithm. Each data point in each sub-figure in Figure 2 is

based on 1, 000 randomly generated task sets.

Results. Figure 2 shows the schedulability ratio for varying rela-

tive system utilizations under each combination ofm and ρ values.

For lower relative system utilization, both approaches have a high

schedulability ratio. However, as the per-core utilization increases,

the schedulability degrades. It can also be observed that the vir-

tual deadline based fpEDF-VD vastly underperforms compared to

the fluid scheduling basedMCF-FR. For both algorithms, as ρ in-

creases, the schedulability increases for a fixed value ofm. Although

the schedulability is improved at higher values of ρ, the benefits
associated with reduced processor speed in lo-criticality mode is

reduced. For fpEDF-VD, the decreasing performance for a given per-

core workload with increasing cores matches the speedup bound

4m/(m + 1) stated in Theorem 3.6.

6 RELATEDWORK
Several variants of the MC model have been proposed since it

was originally introduced by Vestal [34]. A detailed survey of the

updated models and results can be found in [16]. Traditionally, lo-

criticality jobs were droppped in favor of guaranteeing correctness

for hi-criticality jobs [2, 8, 17, 18]. However, recent works have

proposed various techniques to avoid dropping lo-criticality tasks

but rather gradually degrade the performance or even provide

full service guarantees in hi-criticality mode. The first approach

of providing degraded service, called imprecise scheduling, was

first addressed by the imprecise mixed-criticality (IMC) model [15];

it allocates time budgets to lo-criticality tasks when there is a

mode-switch to hi-criticality mode. Other approaches to provide

imprecise scheduling propose to reduce the utilization budgets

[15, 25, 27, 28] either in the form of reduced execution window,

increased period, or dropping some jobs.

Degraded guarantees, although better than no guarantees, are

not acceptable for certain applications as pointed out in [19]. To

address the shortcomings of service degradation, precise schedul-

ing techniques where full service is guaranteed to lo-criticality

tasks has been gaining traction. The schedulability analysis of the

IMC model has been studied for both fixed-priority scheduling

and EDF-VD [15] and [31], respectively. The authors in [4] consid-

ered a generalization of the Vestal model where the less critical

functionalities are not entirely discarded even in the hi-criticality

mode. In [29] is proposed MC-Fluid, a fluid model-based scheduling

algorithm, for the MC tasks in a multiprocessor platform. In the

MC-Fluid model, for each task, a criticality dependent execution

rate is determined. The authors also proposed MC-DP-Fair, which

is an implementable version (on a real-hardware) of MC-Fluid. The

authors in [6] derived MCF, a simplified variant of MC-Fluid, which

for a dual-criticality system, has a speedup bound no worse than

1.33, improved from 1.618. Considering the adaptive MC- Weakly

Hard model, a response time-based schedulability analysis was pro-

posed in [20] that guarantees a minimum service for lo-criticality

tasks in case of a mode switch.

Non-functional requirements such as energy consumption and

its relationship to the operating frequency of the processors has

been a growing concern in non-mixed-crticality systems [12, 23, 24,

33] as well as mixed-criticality systems [9, 22, 26]. One of the earlier

works to exploit the DVFS technique for energy minimization by

reducing the operating frequency is due to [26]. Using the DVFS

technique, the processor is later changed to a higher frequency

when needed, such as in hi-criticality mode. The benefit of min-

imizing overall energy consumption by throttling speeds during

Precise Scheduling of Mixed-Criticality Tasks on Varying-Speed Multiprocessors RTNS’2021, April 7–9, 2021, NANTES, France

0.0 0.2 0.4 0.6 0.8 1.0

Relative System Utilization Ubound

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

a
ti

o

m = 2 ρ = 0.3

fpEDF-VD

MCF-FR

0.0 0.2 0.4 0.6 0.8 1.0

Relative System Utilization Ubound

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

a
ti

o

m = 4 ρ = 0.3

fpEDF-VD

MCF-FR

0.0 0.2 0.4 0.6 0.8 1.0

Relative System Utilization Ubound

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

a
ti

o

m = 8 ρ = 0.3

fpEDF-VD

MCF-FR

0.0 0.2 0.4 0.6 0.8 1.0

Relative System Utilization Ubound

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

a
ti

o

m = 2 ρ = 0.5

fpEDF-VD

MCF-FR

0.0 0.2 0.4 0.6 0.8 1.0

Relative System Utilization Ubound

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

a
ti

o
m = 4 ρ = 0.5

fpEDF-VD

MCF-FR

0.0 0.2 0.4 0.6 0.8 1.0

Relative System Utilization Ubound

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

a
ti

o

m = 8 ρ = 0.5

fpEDF-VD

MCF-FR

0.0 0.2 0.4 0.6 0.8 1.0

Relative System Utilization Ubound

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

at
io

m = 2 ρ = 0.7

fpEDF-VD

MCF-FR

0.0 0.2 0.4 0.6 0.8 1.0

Relative System Utilization Ubound

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

at
io

m = 4 ρ = 0.7

fpEDF-VD

MCF-FR

0.0 0.2 0.4 0.6 0.8 1.0

Relative System Utilization Ubound

0.0

0.2

0.4

0.6

0.8

1.0
S

ch
ed

u
la

b
il

it
y

R
at

io

m = 8 ρ = 0.7

fpEDF-VD

MCF-FR

0.0 0.2 0.4 0.6 0.8 1.0

Relative System Utilization Ubound

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

at
io

m = 2 ρ = 0.9

fpEDF-VD

MCF-FR

0.0 0.2 0.4 0.6 0.8 1.0

Relative System Utilization Ubound

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

at
io

m = 4 ρ = 0.9

fpEDF-VD

MCF-FR

0.0 0.2 0.4 0.6 0.8 1.0

Relative System Utilization Ubound

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

at
io

m = 8 ρ = 0.9

fpEDF-VD

MCF-FR

Figure 2: Schedulability ratio comparisons for different values ofm and ρ.

RTNS’2021, April 7–9, 2021, NANTES, France Tianning She, Sudharsan Vaidhun, Qijun Gu, Sajal K. Das, Zhishan Guo, and Kecheng Yang

runtime has also been established in [26]. A drawback of the ap-

proach is that all lo-criticality tasks are degraded in hi-criticality

mode. A natural extension to multi-core processors was explored in

[5, 32]. The combination of providing precise scheduling on varying

speed uniprocessor system has been explored in [13, 35].

7 CONCLUSION
In this paper, we have presented our work on precise MC sched-

uling on varying-speed multiprocessor platforms. In particular,

we have developed two algorithms called fpEDF-VD and MCF-FR.
For each algorithm, we have presented a sufficient schedulability

test and have shown its correctness. Furthermore, we have proved

a speedup bound for fpEDF-VD and an approximation ratio for

MCF-FR. To compare these algorithms and demonstrate their ef-

fectiveness, we have conducted empirical schedulability studies on

randomly generated task systems.

In future, we plan to investigate a tighter speedup bound and

approximation ratio. Although we have limited our attention to

the scenarios where all processors must operate at the same speed

(i.e., all processors at the energy-conserving speed or all proces-

sors at the full speed), it would be interesting to explore scenarios

where individual processors are able to switch speeds indepen-

dently. Finally, we plan to conduct further quantitative study on

actual energy savings with on-board implementations.

ACKNOWLEDGMENTS
This work was partially supported by NSF grants CNS-1850851,

PPoSS-2028481, OAC-1725755, CCF-1659807, CNS-1156712, CNS-

1545050, a start-up grant from the University of Central Florida,

and start-up and REP grants from Texas State University.

REFERENCES
[1] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo DAngelo, Haohan Li, Alberto

Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. 2012. The pre-

emptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic

task systems. In Proceedings of the 24th Euromicro Conference on Real-Time Systems
(ECRTS), IEEE. IEEE, 145–154.

[2] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’angelo, Haohan Li, Alberto

Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. 2015. Preemptive

uniprocessor scheduling of mixed-criticality sporadic task systems. Journal of
the ACM (JACM) 62, 2 (2015), 14.

[3] Sanjoy Baruah, Alan Burns, and Zhishan Guo. 2016. Scheduling mixed-criticality

systems to guarantee some service under all non-erroneous behaviors. In Pro-
ceedings of the 28th Euromicro Conference on Real-Time Systems (ECRTS), IEEE.
IEEE, 131–138.

[4] Sanjoy Baruah, Alan Burns, and Zhishan Guo. 2016. Scheduling mixed-criticality

systems to guarantee some service under all non-erroneous behaviors. In 2016
28th Euromicro Conference on Real-Time Systems (ECRTS). IEEE, 131–138.

[5] Sanjoy Baruah, Bipasa Chattopadhyay, Haohan Li, and Insik Shin. 2014. Mixed-

criticality scheduling onmultiprocessors. Real-Time Systems 50, 1 (2014), 142–177.
[6] Sanjoy Baruah, Arvind Easwaran, and Zhishan Guo. 2015. MC-Fluid: simplified

and optimally quantified. In 2015 IEEE Real-Time Systems Symposium. IEEE, 327–

337.

[7] Sanjoy Baruah and Zhishan Guo. 2013. Mixed-criticality scheduling upon varying-

speed processors. In 2013 IEEE 34th Real-Time Systems Symposium. IEEE, 68–77.

[8] Sanjoy Baruah and Zhishan Guo. 2014. Scheduling mixed-criticality implicit-

deadline sporadic task systems upon a varying-speed processor. In Proceedings
of the 35th Real-Time Systems Symposium (RTSS), IEEE. IEEE, 31–40.

[9] Sanjoy Baruah and Zhishan Guo. 2014. Scheduling Mixed-Criticality Implicit-

Deadline Sporadic Task Systems upon a Varying-Speed Processor. In 2014 IEEE
Real-Time Systems Symposium. 31–40.

[10] Sanjoy K Baruah. 2004. Optimal utilization bounds for the fixed-priority schedul-

ing of periodic task systems on identical multiprocessors. IEEE Trans. Comput.
53, 6 (2004), 781–784.

[11] Sanjoy K Baruah, Vincenzo Bonifaci, Gianlorenzo D-Angelo, Alberto Marchetti-

Spaccamela, Suzanne Van Der Ster, and Leen Stougie. 2011. Mixed-criticality

scheduling of sporadic task systems. In European Symposium on Algorithms.
Springer, 555–566.

[12] Ashikahmed Bhuiyan, Zhishan Guo, Abusayeed Saifullah, Nan Guan, and Haoyi

Xiong. 2018. Energy-efficient real-time scheduling of DAG tasks. ACM Transac-
tions on Embedded Computing Systems (TECS) 17, 5 (2018), 84.

[13] Ashikahmed Bhuiyan, Sai Sruti, Zhishan Guo, and Kecheng Yang. 2019. Precise

scheduling of mixed-criticality tasks by varying processor speed. In Proceedings
of the 27th International Conference on Real-Time Networks and Systems. 123–132.

[14] Alan Burns. 2019. Multi-Model Systems – an MCS by Any Other Name. In

Proceedings of the 7th International Workshop onMixed Criticality Systems (WMC).
[15] Alan Burns and Sanjoy Baruah. 2013. Towards a more practical model for mixed

criticality systems. In Workshop on Mixed-Criticality Systems.
[16] Alan Burns and Robert I Davis. 2017. A survey of research into mixed criticality

systems. ACM Computing Surveys (CSUR) 50, 6 (2017), 82.
[17] Arvind Easwaran. 2013. Demand-based scheduling of mixed-criticality sporadic

tasks on one processor. In Proceedings of the 34th Real-Time Systems Symposium
(RTSS), IEEE. IEEE, 78–87.

[18] Pontus Ekberg and Wang Yi. 2014. Bounding and shaping the demand of gen-

eralized mixed-criticality sporadic task systems. Real-time systems 50, 1 (2014),
48–86.

[19] Rolf Ernst and Marco Di Natale. 2016. Mixed Criticality Systems - A History of

Misconceptions? IEEE Design & Test 33, 5 (2016), 65–74.
[20] Oliver Gettings, Sophie Quinton, and Robert I Davis. 2015. Mixed criticality

systems with weakly-hard constraints. In Proceedings of the 23rd International
Conference on Real Time and Networks Systems. ACM, 237–246.

[21] Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. 2013. Improving the

scheduling of certifiable mixed-criticality sporadic task systems. Technical Report
2013–008 (2013).

[22] Zhishan Guo and Sanjoy Baruah. 2015. The concurrent consideration of uncer-

tainty inWCETs and processor speeds in mixed-criticality systems. In Proceedings
of the 23rd International Conference on Real Time and Networks Systems. 247–256.

[23] Zhishan Guo, Ashikahmed Bhuiyan, Di Liu, Aamir Khan, Abusayeed Saifullah,

and Nan Guan. 2019. Energy-Efficient Real-Time Scheduling of DAGs on Clus-

tered Multi-Core Platforms. In 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 156–168.

[24] Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan, and Haoyi

Xiong. 2017. Energy-efficient multi-core scheduling for real-time DAG tasks.

(2017).

[25] Zhishan Guo, Kecheng Yang, Sudharsan Vaidhun, Samsil Arefin, Sajal K Das, and

Haoyi Xiong. 2018. Uniprocessor Mixed-Criticality Scheduling with Graceful

Degradation by Completion Rate. In 2018 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 373–383.

[26] Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar Thiele.

2014. Energy efficient dvfs scheduling formixed-criticality systems. In Proceedings
of the 14th International Conference on Embedded Software, ACM. ACM, 11.

[27] Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar Thiele.

2015. Run and be safe: Mixed-criticality scheduling with temporary processor

speedup. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
2015. IEEE, 1329–1334.

[28] Mathieu Jan, Lilia Zaourar, and Maurice Pitel. 2013. Maximizing the execution

rate of low criticality tasks in mixed criticality system. Proc. WMC, RTSS (2013),
43–48.

[29] Jaewoo Lee, Kieu-My Phan, Xiaozhe Gu, Jiyeon Lee, Arvind Easwaran, Insik Shin,

and Insup Lee. 2014. Mc-fluid: Fluid model-based mixed-criticality scheduling

on multiprocessors. In 2014 IEEE Real-Time Systems Symposium. IEEE, 41–52.

[30] Greg Levin, Shelby Funk, Caitlin Sadowski, Ian Pye, and Scott Brandt. 2010. DP-

FAIR: A simple model for understanding optimal multiprocessor scheduling. In

2010 22nd Euromicro Conference on Real-Time Systems. IEEE, 3–13.
[31] Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor Stefanov, and

Wang Yi. 2016. EDF-VD scheduling of mixed-criticality systems with degraded

quality guarantees. In Proceedings of the 37th Real-Time Systems Symposium
(RTSS), 2016 IEEE. IEEE, 35–46.

[32] Sujay Narayana, Pengcheng Huang, Georgia Giannopoulou, Lothar Thiele, and

R Venkatesha Prasad. 2016. Exploring energy saving for mixed-criticality systems

on multi-cores. In Proceedings of the 22nd Real-Time and Embedded Technology
and Applications Symposium (RTAS), IEEE. IEEE, 1–12.

[33] Saad Zia Sheikh and Muhammad Adeel Pasha. 2018. Energy-Efficient Multi-

core Scheduling for Hard Real-Time Systems: A Survey. ACM Transactions on
Embedded Computing Systems (TECS) 17, 6 (2018), 94.

[34] S. Vestal. 2007. Preemptive scheduling of multi-criticality systems with varying

degrees of execution time assurance. In Proceedings of the 28th IEEE Real-Time
Systems Symposium (RTSS).

[35] Kecheng Yang, Ashikahmed Bhuiyan, and Zhishan Guo. 2020. F2VD: Fluid Rates

to Virtual Deadlines for Precise Mixed-Criticality Scheduling on a Varying-Speed

Processor. In 2020 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 1–9.

	Abstract
	1 Introduction
	2 Model and Problem Statement
	3 Scheduling by Virtual Deadlines
	3.1 Algorithm fpEDF-VD
	3.2 Schedulability Test
	3.3 Speedup Bound

	4 Fluid Scheduling
	4.1 A Fluid Assignment and Execution Scheme
	4.2 Correctness Guarantee
	4.3 Approximation Ratio Bound

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

