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Abstract
It has long been known that the global earliest-deadline-
first (GEDF) scheduler is soft real-time (SRT) optimal for
sporadic task systems executing on identical multiprocessor
platforms, regardless of whether task execution is preemp-
tive or non-preemptive. This notion of optimality requires
deadline tardiness to be provably bounded for any feasi-
ble task system. In recent years, there has been interest in
extending these SRT optimality results to apply to uniform
heterogeneous platforms, in which processors may have dif-
ferent speeds. However, it was recently shown that non-
preemptive GEDF is not SRT optimal on such platforms.
The remaining case, preemptive GEDF, has turned out to be
quite difficult to tackle and has remained open for a num-
ber of years. In this paper, this case is resolved by showing
that preemptive GEDF is indeed SRT optimal on uniform
platforms, provided a certain job migration policy is used.

1 Introduction
Multicore machines provide considerable processing power
within a constrained size, weight, and power envelope. As a
result, they are quickly emerging as the hardware platform
of choice when hosting computationally intensive real-time
applications. Although this emergence is well underway, re-
search directed at finding good real-time schedulers for such
platforms continues to be relevant. To fully harness the po-
tential of multicore machines, such a scheduler should be
reasonable to implement and preferably be optimal, mean-
ing that it can correctly schedule any feasible task system.
A task system is feasible if it is possible to schedule it (via
some method) without violating timing constraints.

One multiprocessor real-time scheduler that has re-
ceived considerable attention is the preemptive global
earliest-deadline-first (GEDF) scheduler.1 GEDF gener-
alizes the preemptive uniprocessor earliest-deadline-first
(EDF) scheduler by using a single run queue to schedule all
processors. EDF is optimal on uniprocessors and is straight-
forward to implement, so the motivation for considering its
generalization in GEDF is clear. Unfortunately, in hard real-
time (HRT) systems, in which every deadline must be met,
GEDF is not optimal, due to the Dhall Effect [6]. However,
for soft real-time (SRT) systems, where timing correctness
is defined by requiring deadline tardiness to be bounded,
GEDF is optimal, assuming all processors are identical [5].
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1References to “GEDF” without qualification should henceforth be
taken to mean preemptive GEDF.

In fact, this optimality result extends to non-preemptive
GEDF (NP-GEDF), under which jobs (i.e., task invocations)
execute non-preemptively.
Heterogeneous multiprocessor platforms. The multicore
revolution is currently undergoing a second wave of inno-
vation in the form of heterogeneous processing elements.
This evolution is further complicating software design pro-
cesses that were already being challenged on account of the
significant parallelism that exists in homogeneous multicore
platforms. With heterogeneity, choices must be made when
allocating hardware resources to software components. The
need to resolve such choices can add considerable complex-
ity to resource allocation.

One heterogeneous platform model that has been studied
extensively is the uniform model [13]. This model differs
form the conventional identical model in that processors
may be of different speeds. The uniform model is viewed
as an important stepping stone between the identical model
and the unrelated model, which allows different tasks to ex-
perience unequal speed differences when moving from one
processor to another. Additionally, the uniform model can
be seen as an idealization of various restricted processor
supply models. Under such a supply model, a processor may
be partially available to a given application and hence can
be approximated as executing at a slower speed.

Real-time scheduling on uniform multiprocessors has
been widely studied (e.g., [1, 3, 4, 7, 9]), but mostly with
respect to HRT systems. Recently, we ourselves devised a
semi-partitioned scheduler [17] that can be configured to
be either HRT or SRT optimal on uniform platforms by
leveraging the classical Level Algorithm [10] as a subrou-
tine. The Level Algorithm has also been applied by Funk
et al. [8] to obtain a scheduler that is HRT optimal for
implicit-deadline periodic task systems. An understanding
of the Level Algorithm is useful for appreciating some of
the subtleties that arise on uniform platforms, so we have
provided an introduction to it in an appendix.

To our knowledge, all existing (HRT or SRT) schedulers
that are optimal on uniform platforms require job priorities
to vary during runtime, usually in a complicated way (like
in the Level Algorithm). In contrast, GEDF requires sim-
ple logic to implement and is also a job-level-fixed-priority
scheduler, which implies that existing real-time locking pro-
tocols can be potentially applied under it [2]. Therefore,
while GEDF is not HRT optimal on uniform platforms,
there are good reasons for investigating its SRT optimality
in this context.
SRT optimality of GEDF on uniform platforms. Given
the aforementioned SRT optimality results concerning
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GEDF and NP-GEDF on identical platforms, one might
expect that similar results can be easily shown for uni-
form platforms. However, we recently established the non-
optimality of NP-GEDF in this context via a counterex-
ample involving only two processors [16]. In the same pa-
per, we were also able to establish the optimality of GEDF
for such two-processor platforms. However, the general
problem for the preemptive case has remained open. We
ourselves have worked on this open problem intensively
for over three years and have written about it in two pa-
pers [16, 18]. Others have considered it as well [14].

The elusiveness of this open problem stems from the fact
that the feasibility condition for the uniform case is much
more nuanced than that for the identical case. In particular,
the uniform feasibility condition allows tasks to exist that
have utilizations exceeding the speeds of certain processors.
If such a task τi is continuously scheduled on a processor
that is “too slow,” then the tardiness of its jobs will increase
without bound. In contrast, if τi were to be scheduled con-
tinuously on an identical platform, then its tardiness would
not increase, assuming its utilization is at most one (which
is required for feasibility in the identical case). In particular,
none of its jobs would be able to execute for longer than Ti
time units, where Ti is its period. This very issue of tasks ex-
ecuting on processors that are “too slow” directly “breaks”
the prior GEDF optimality proof for identical platforms [5]
when extended to the uniform case.

Contributions. In this paper, we close the longstanding
open problem mentioned above by proving that GEDF is
SRT optimal on uniform platforms. Because the prior proof
for identical platforms “breaks” in the uniform case, this
new result required devising several innovative proof tech-
niques relevant to uniform platforms.

The version of GEDF that we consider uses an intu-
itive job migration policy: jobs with earlier deadlines are
assigned to faster processors. Note that such policies are im-
portant in our context. For example, if a task were allowed
to continuously execute on a processor that is “too slow,”
then as discussed above, its tardiness would be unbounded.

The tardiness bounds we provide are not tight. Still, they
are the first such bounds ever derived for GEDF in the uni-
form case that apply to any feasible task system. Moreover,
their existence eliminates the possibility of a counterexam-
ple in which a feasible task system exhibits unbounded tar-
diness under GEDF. In contrast, such counterexamples are
known to exist under NP-GEDF [16], as mentioned earlier.
Combining the results of this paper with those in [16], we
now have a complete picture regarding the SRT optimality
of GEDF and NP-GEDF on uniform platforms.

Organization. In the rest of the paper, we provide needed
background (Sec. 2), establish our main tardiness-bound
result (Sec. 3), and conclude (Sec. 4). Due to space con-
straints, we limit attention in the main body of the paper to
periodic task systems that satisfy a certain technical restric-
tion. In an appendix, we explain how to extend our results
to sporadic task systems that are not restricted.

2 Background
When considering the issue of heterogeneity, processor
speed becomes an important issue. The speed of a proces-
sor refers to the amount of work completed in one time
unit when a task is executed on that processor. The fol-
lowing speed-oriented classification of multiprocessor plat-
forms has been widely accepted [7, 13].

• Identical multiprocessors. Every task is executed on
any processor at the same speed, which is usually nor-
malized to be 1.0 for simplicity.

• Uniform multiprocessors. Different processors may
have different speeds, but on a given processor, every
task is executed at the same speed. The speed of pro-
cessor p is denoted sp.

• Unrelated multiprocessors. The execution speed of
a task depends on both the processor on which it is
executed and the task itself, i.e., a given processor may
execute different tasks at different speeds.

In this paper, our focus is uniform multiprocessors.
Specifically, we consider the scheduling of a set τ of n
sequential tasks on a uniform platform2 π consisting of
m processors, where the processors are indexed by their
speeds in non-increasing order, i.e., si ≥ si+1 for i =
1, 2, . . . ,m − 1. We denote the sum of k largest speeds on
π as Sk =

∑k
i=1 si for k = 1, 2, . . . ,m. Furthermore, we

assume m ≥ 2, for otherwise, uniprocessor analysis can
be applied. We also assume n ≥ m, for otherwise, there is
no point in ever scheduling any task on any of the m − n
slower processors, so m and n can conceptually be deemed
as equal in this case.

We consider tasks that are either sporadic or periodic.
A sporadic (respectively, periodic) task τi releases a se-
quence of jobs with a minimum (respectively, exact) sep-
aration of Ti time units between invocations. The parameter
Ti is called the period of τi. τi also has a worst-case ex-
ecution requirement Ci, which is defined as the maximum
execution time of any one job (invocation) of τi on a unit-
speed processor. We let Cmax = max{Ci | 1 ≤ i ≤ n}.
The utilization of task τi is given by ui = Ci/Ti. We as-
sume that tasks are indexed in non-increasing order by uti-
lization, i.e., ui ≥ ui+1 for i = 1, 2, . . . , n − 1. We denote
the sum of k largest utilizations in τ as Uk =

∑k
i=1 ui for

k = 1, 2, . . . , n. Furthermore, we denote the ratio between
the largest and the smallest utilizations as ρ = u1/un. As
for scheduling, we assume that deadlines are implicit, i.e.,
each task τi has a relative deadline parameter equal to its
period Ti. Furthermore, because tasks are sequential, intra-
task parallelism is not allowed, and an invocation of a task
cannot commence execution until all previous invocations
of that task complete. Throughout the paper, we assume that
time is continuous.

2We use the terminology “uniform platform” and “uniform multipro-
cessor” interchangeably.
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We let Ji,j denote the jth job (or invocation) of task τi.
Job Ji,j has a release (or arrival) time denoted ai,j , an abso-
lute deadline denoted di,j = ai,j +Ti, and a completion (or
finish) time denoted fi,j . The tardiness of Ji,j is defined by
max{0, fi,j−di,j} and its response time by fi,j−ai,j . The
tardiness of task τi in a schedule is the maximum tardiness
of any of its jobs in that schedule. A job is pending if it is
released but has not completed, and is ready if it is pending
and all preceding jobs of the same task have completed.

A task set is HRT schedulable (respectively, SRT schedu-
lable) under a given scheduler if each task can be guaranteed
zero (respectively, bounded) tardiness under that scheduler.
A task set is HRT feasible (respectively, SRT feasible) if it
is HRT schedulable (respectively, SRT schedulable) under
some scheduler. A given scheduler is HRT optimal (respec-
tively, SRT optimal) if any HRT feasible (respectively, SRT
feasible) task set is HRT schedulable (respectively, SRT
schedulable) under it.

Ideal schedule. We define an ideal multiprocessor πI for
the task set τ as one that consists of n uniform processors
where the speeds of the n processors exactly match the uti-
lizations of the n tasks in τ , respectively, i.e., the speed of
the ith processor is sIi = ui for i = 1, 2, . . . , n. We define
the ideal schedule I to be the partitioned schedule for τ on
πI , where each task τi in τ is assigned to the processor of
speed sIi . Then, in I, every job in τ commences execution at
its release time and completes execution within one period
(it exactly executes for one period if and only if its actual
execution requirement matches its worst-case execution re-
quirement). Thus, all deadlines are met in I.

Definition of lag. Let A(S, τi, t1, t2) denote the cumulative
processor capacity allocated to task τi in an arbitrary sched-
ule S within the time interval [t1, t2). Because intra-task
parallelism is strictly forbidden, we have

0 ≤ A(S, τi, t1, t2) ≤ s1 · (t2 − t1). (1)

Furthermore, by the definition of the ideal schedule I,

0 ≤ A(I, τi, t1, t2) ≤ ui · (t2 − t1). (2)

Also, if τi releases jobs periodically and every job’s actual
execution requirement equals its worst case of Ci, then for
any t1 and t2 such that ai,1 ≤ t1 ≤ t2,

A(I, τi, t1, t2) = ui · (t2 − t1). (3)

For an arbitrary schedule S, we denote the difference be-
tween the allocation to a task τi in I and in S within time
interval [0, t) as

lag(τi, t,S) = A(I, τi, 0, t)− A(S, τi, 0, t). (4)

The lag function captures the allocation difference between
an arbitrary actual schedule S and the ideal schedule I.
If lag(τi, t,S) is positive, then S has performed less work
on τi until time t, i.e., τi is “under-allocated,” while if
lag(τi, t,S) is negative, then τi is “over-allocated.” Also,

for any two time instants t1 and t2 where t1 ≤ t2, we have

lag(τi, t2,S) = lag(τi, t1,S)+

A(I, τi, t1, t2)− A(S, τi, t1, t2). (5)

A necessary and sufficient SRT feasibility condition. For
HRT task sets, Funk et al. [8] showed that a set of implicit-
deadline periodic tasks is feasible on a uniform platform if
and only if the following constraints hold:

Un ≤ Sm, (6)
Uk ≤ Sk, for k = 1, 2, . . . ,m− 1. (7)

It can be shown that this constraint set is also a feasibil-
ity condition for implicit-deadline sporadic tasks. Further-
more, the sufficiency of this constraint set for HRT task sets
implies its sufficiency for SRT task sets. In fact, these con-
straints are necessary for SRT task sets as well. To see this,
note that if Un > Sm holds (contrary to (6)), then the to-
tal workload over-utilizes the platform, so some task will be
unboundedly tardy if tasks release jobs as soon as possible
and always execute for their worst-case costs. Furthermore,
if Uk > Sk holds (contrary to (7)), then the set of k highest-
utilization tasks will be “under-allocated” at every time in-
stant if they release jobs as soon as possible and always ex-
ecute for their worst-case costs. This is because k tasks can
be allocated to at most k processors at any time instant and
the sum of the speeds of any k processors is at most Sk.
Thus,

∑k
i=1 lag(τi, t,S) will increase unboundedly, which

implies that lag(τi, t,S) increases unboundedly for some i.
This implies that task τi will be unboundedly tardy.

To summarize, (6) and (7) are also a necessary and suf-
ficient feasibility condition for SRT task sets. Therefore,
when henceforth referring to this constraint set as a feasi-
bility condition, we do not need to further specify whether
this is meant for HRT or SRT task sets.
The GEDF scheduler. From a scheduling point of view,
uniform platforms differ from identical ones in a signifi-
cant way: on a uniform platform, besides which tasks are
scheduled at any time, the scheduler must also decide where
they are scheduled, because different processors may have
different speeds. Thus, we must refine the notion of GEDF
scheduling to be clear about where tasks are scheduled. In
this paper, we assume the following.

(G) If at most m jobs are ready, then all ready jobs
are scheduled; otherwise, the m ready jobs with ear-
liest deadlines are scheduled. At any time, the ready
job with the kth earliest deadline is scheduled on the
kth fastest processor for any k. (Note that this implies
that a job may migrate from one processor to another
during its execution.) Deadline ties are broken arbi-
trarily.

Henceforth, all references to GEDF are assumed to mean
GEDF as defined by Policy (G), unless specified otherwise.

Strictly speaking, Policy (G) implies that a release or
completion of a single job could cause up to m − 1 run-
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ning jobs to migrate. However, in practice, the number of
different speeds is usually quite limited and there is no point
in migrating a job between same-speed processors, so such
frequent migrations are not actually necessary. We could in-
corporate such details into Policy (G) without altering any
of our results, but we will refrain from doing so for ease of
exposition.

At a given time instant t, we say that a task is pending
if it has any pending jobs at time t. If task τi is pending at
time t, then it has exactly one ready job Ji,j at time t. The
deadline of that job is called the effective deadline of τi at
time t and is denoted di(t) = di,j . Similarly, the effective
release time of τi at time t is denoted ai(t) = ai,j . Because
deadlines are implicit, di(t) = ai(t) + Ti. Also, ai(t) ≤ t
holds, for otherwise, Ji,j would not be ready at time t. The
following lemma gives a sufficient lag-based condition for
a task to be pending.

Lemma 1. If lag(τi, t,S) > 0, then τi is pending at time t
in S .

Proof. Suppose that lag(τi, t,S) > 0 holds but τi is not a
pending task at time t in S. Then, all jobs of τi released
at or before t have completed by time t. Thus, letting W
denote the total actual execution requirement of all such
jobs, we have A(S, τi, 0, t) = W . In the ideal schedule
I, only released jobs can be scheduled and will not exe-
cute for more than their actual execution requirement. Thus,
A(I, τi, 0, t) ≤ W holds as well. By (4), these facts imply
lag(τi, t,S) = A(I, τi, 0, t) − A(S, τi, 0, t) ≤ 0. This con-
tradicts our assumption that lag(τi, t,S) > 0 holds.

Prior results and the remaining open problem. As men-
tioned earlier in Sec. 1, the key difficulty faced when try-
ing to extend prior tardiness analysis for identical plat-
forms [5, 12] to uniform ones is that, in the uniform case,
tasks can execute on processors that are “too slow.” The spe-
cific problematic property required in the prior analysis is
the following.

(P) If any job Ji,j executes continuously, then it must
complete within Ti time units, regardless of the pro-
cessor on which it executes.

Clearly, (P) can be violated if Ji,j executes entirely on
processors of speed less than ui.

It is tempting to obviate all problematic issues pertain-
ing to Property (P) by simply enforcing scheduling policies
that uphold it. Such an approach was taken by Tong and
Liu [14], who considered a variant of GEDF in which each
task τi is only allowed to execute on processors with speed
at least ui. However, such a requirement results in non-
optimal scheduling. For example, Tong and Liu’s GEDF
variant is not able to correctly schedule a set of two tasks
on two processors such that u1 = 2, u2 = 2, s1 = 3, and
s2 = 1. From (6) and (7), we see that this task set is feasible.
However, under their algorithm, a task τi can only execute
on a processor of speed at least ui, so both tasks in this ex-
ample must exclusively execute on the processor with speed

s1 = 3. That processor will be over-utilized if each task re-
leases jobs as soon as possible and always executes for its
worst-case cost, since u1 + u2 = 4 > s1 = 3.

In other work, we successfully eliminated the need for
Property (P) by relaxing the task model to allow consecu-
tive jobs of the same task to execute in parallel. Under this
relaxed task model, we were able to establish the SRT opti-
mality of GEDF on uniform platforms [15].

For the sequential task model being considered in this
paper, we also found that Property (P) is not necessary if the
underlying uniform platform has only two processors [16].
However, we believe that it is unlikely that the particular
proof strategy used in that paper can be extended to the more
general m-processor case.

To clearly place our contribution in its proper context in
light of this prior work, we emphasize here several assump-
tions made hereafter in solving the open problem considered
in this paper:

• we are interested in any feasible task set, i.e., no con-
straints on task utilizations other than (6) and (7) are
assumed;

• intra-task parallelism is strictly forbidden, i.e., jobs of
the same task must execute in sequence;

• the uniform platform may have m processors, where
m can be any positive integer value.

3 Tardiness Bounds
In this section, we prove tardiness bounds for an arbitrary
feasible periodic task set on a uniform platform π, under
the following assumption.

(A) Every job of any task executes for its worst-case
execution requirement of Ci.

In the rest of this section, we restrict attention to a periodic
task set τ for which Assumption (A) holds. Our objective is
to derive tardiness bounds when the GEDF scheduler is used
to schedule τ . We do so by reasoning about lag values in an
arbitrary GEDF schedule S for τ . The concept of lag is use-
ful for our purposes because a task that has positive lag at
one of its deadlines will have a tardy job. Focusing on peri-
odic task sets where Assumption (A) holds facilitates much
of the lag-based reasoning that is needed. Our results can be
extended so that Assumption (A) is not required and so that
sporadic tasks can be supported. We defer consideration of
such extensions until later.
Properties of lag values and deadlines. We begin by prov-
ing a number of properties concerning lag values and dead-
lines and relationships between the two. The first such prop-
erty is given in the following lemma.

Lemma 2. If task τi is pending at time t in S, then its ef-
fective deadline di(t) has the following relationship with
lag(τi, t,S).

t− lag(τi, t,S)

ui
< di(t) ≤ t−

lag(τi, t,S)

ui
+ Ti (8)
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Proof. Let ei(t) denote the remaining execution requirement
for the ready job Ji,j of τi at time t in S. Because Ji,j is
ready at time t, it has not finished execution by then, so

0 < ei(t) ≤ Ci. (9)

Furthermore, all jobs of τi prior to Ji,j have completed by
time t in S. Let W denote the total execution requirement
for all of these jobs. Then, given Assumption (A),3

A(S, τi, 0, t) = W + Ci − ei(t). (10)

Now consider the ideal schedule I. In it, all jobs of τi prior
to Ji,j have completed by time ai(t) ≤ t. Given Assump-
tion (A), within [ai(t), t), I continuously4 executes job Ji,j
at a rate of ui. Thus,

A(I, τi, 0, t) = W + (t− ai(t))ui. (11)

Therefore, an expression for lag(τi, t,S) can be derived as
follows.

lag(τi, t,S) = {by (4)}
A(I, τi, 0, t)− A(S, τi, 0, t)

= {by (10) and (11)}
(t− ai(t))ui − (Ci − ei(t))

= {because di(t) = ai(t) + Ti}
(t− di(t) + Ti)ui − (Ci − ei(t))

= {because Ti · ui = Ci}
(t− di(t))ui + ei(t)

By (9) and the above expression for lag(τi, t,S), we have

(t− di(t))ui < lag(τi, t,S) ≤ (t− di(t))ui + Ci. (12)

Rearranging the terms in (12) yields (8).

Corollary 1. If lag(τi, t,S) ≤ L for all t, then the tardiness
of task τi is at most L/ui.

Proof. Suppose that

lag(τi, t,S) ≤ L (13)

holds but τi has tardiness exceedingL/ui. Then, there exists
a job Ji,j that is still pending at some time t ≥ di,j where

t− di,j > L/ui. (14)

Because Ji,j is pending at time t, τi is a pending task at time
t and its ready job at time t cannot be a job released later
than Ji,j . Thus, τi’s effective deadline at t satisfies di(t) ≤

3Without Assumption (A), Ji,j may execute in total for less than its
worst-case execution requirement of Ci, and therefore only “≤” can be
claimed in (10).

4Without Assumption (A), Ji,j might not execute “continuously,” so
only “≤” can be claimed in (11).

di,j . Therefore,

t− di(t) ≥ t− di,j
> {by (14)}

L/ui

≥ {by (13)}
lag(τi, t,S)/ui.

That is, t − lag(τi, t,S)/ui > di(t), which contradicts
Lemma 2.

Recall that if lag(τi, t,S) is negative, then τi is over-
allocated in schedule S compared to schedule I. However,
the actual schedule S cannot execute jobs that are not re-
leased and therefore can never get more than a full job
“ahead” of I. Thus, we have the following trivial lower
bound5 on lag(τi, t,S), which we state without proof.

Lemma 3. lag(τi, t,S) ≥ −Cmax.

The following lemma uses the relationship between ef-
fective deadlines and lag values established in Lemma 2 to
obtain a sufficient lag-based condition for one task to have
an earlier effective deadline than another.

Lemma 4. If tasks τi and τk are both pending at time t, and
if

lag(τi, t,S) ≥ ui
uk
· lag(τk, t,S) + Ci (15)

holds, then di(t) < dk(t).

Proof.

di(t) ≤ {by Lemma 2}

t− lag(τi, t,S)

ui
+ Ti

≤ {by (15)}

t−
ui

uk
· lag(τk, t,S) + Ci

ui
+ Ti

= {canceling ui and using Ci/ui = Ti}

t− lag(τk, t,S)

uk
< {by Lemma 2}

dk(t)

The lemma follows.

Corollary 2. If tasks τi and τk are both pending at time t
and if lag(τi, t,S) ≥ ρ · lag(τk, t,S) + Cmax holds, where
ρ = u1/un, then di(t) < dk(t).

Proof. Because tasks are indexed from highest utilization
to lowest, lag(τi, t,S) ≥ ρ · lag(τk, t,S) + Cmax = u1

un
·

lag(τk, t,S)+Cmax ≥ ui

uk
· lag(τk, t,S)+Ci. By Lemma 4,

the corollary follows.

5A tighter bound is possible, but this simple bound is sufficient for our
purposes.
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Proof strategies for deriving tardiness bounds. Given
the relationships established above between lag values and
deadlines, we are now ready to derive tardiness bounds. Ac-
cording to Corollary 1, lag bounds directly imply tardiness
bounds. Thus, one natural strategy is to attempt to derive n
individual lag bounds, one per task. However, we were un-
able to make this strategy work. Intuitively, this is because,
in deriving n individual per-task lag bounds, we must con-
sider how all tasks interact as they are scheduled together.
When doing this, it is difficult to avoid a case explosion that
causes the entire proof to collapse. In particular, the fea-
sibility condition given by (6) and (7) must ultimately be
exploited in the proof. Every attempt we made in deriving
per-task lag bounds resulted in a case explosion that was so
unwieldy, we could not discern how (6) and (7) could pos-
sibly factor into the proof.

Notice that (6) simply requires that the platform is not
over-utilized, which is something required in reasoning
about identical platforms as well. The constraints in (7),
however, are unique to the uniform case. Observe that these
constraints reference the sum of the k largest utilizations
and speeds. Accordingly, we switched from working on
proof strategies that focus on per-task lag bounds to one that
focuses on the sum of the k largest lag values.
Our proof strategy, formally explained. In order to de-
scribe this proof strategy more formally, we let τ̂`(t) denote
the task that has the `th largest lag at time instant t, with
ties broken arbitrarily. We also denote the `th largest lag at
time instant t as Lagl(t), i.e., Lagl(t) = lag(τ̂l(t), t,S).
Furthermore, we let T`(t) denote the set of tasks corre-
sponding to Lag1(t), Lag2(t), . . . , Lag`(t), i.e., T`(t) =
{τ̂1(t), τ̂2(t), . . . , τ̂`(t)}.

To derive tardiness bounds, we show that the following
m + 1 inequalities, (B1), . . . , (Bm), and (Bn), hold at any
time t.
Inequality Set (B):

Lag1(t) ≤ β1 (B1)
Lag1(t) + Lag2(t) ≤ β2 (B2)

Lag1(t) + Lag2(t) + Lag3(t) ≤ β3 (B3)
...

...
Lag1(t) + Lag2(t) + · · ·+ Lagk(t) ≤ βk (Bk)

...
...

Lag1(t) + Lag2(t) + · · ·+ Lagm(t) ≤ βm (Bm)
Lag1(t) + Lag2(t) + · · ·+ Lagn(t) ≤ βn (Bn)

If all constraints in the inequality set (B) hold at all time in-
stants t, where β1, β2, . . . , βm, and βn are constants (which
will depend on task-set parameters), then, by the definition
of Lag1(t), β1 is an upper bound on lag(τi, t,S) for any i
and for any t. Given such an upper bound, by Corollary 1,
tardiness bounds will follow.

In order to prove that the constraints in (B) hold at all
time instants t, we must carefully define β1, β2, . . . , βm,

and βn. They are defined as follows.

β1 = x1 (X1)
β2 = β1 + x2 (X2)
β3 = β2 + x3 (X3)

...
...

βk = βk−1 + xk (Xk)
...

...
βm = βm−1 + xm (Xm)
βn = βm + xn (Xn)

where

xn = −(n−m− 1) · Cmax (Y1)
xm = (n−m+ 1) · Cmax (Y2)
xi = ρ · xi+1 + Cmax, for i = m−1,m−2, . . . , 1 (Y3)

Note that, in (Y3), ρ = u1/un.
To see that β1, β2, . . . , βm, and βn are well-defined, ob-

serve that xn and xm can be directly calculated by (Y1) and
(Y2) for any given task set. Then, xm−1, xm−2, . . . , x1 can
be calculated inductively by (Y3). Finally, β1, β2, . . . , βm,
and βn can be calculated by (X1), . . . , (Xm), and (Xn).

Formal derivation of tardiness bounds. Having set up
our proof strategy, we next present a critical mathematical
property of the lag and Lag functions when they are viewed
as a function of t.

Property 1. For a given task τi and a given schedule S ,
lag(τi, t,S) is a continuous function of t. For a given sched-
ule S, Lag`(t) is a continuous function of t for each `.

Proof. lag(τi, t,S) is a continuous function of t because,
by (4), lag(τi, t,S) = A(I, τi, 0, t) − A(S, τi, 0, t), and
A(I, τi, 0, t) and A(S, τi, 0, t) are both (clearly) continu-
ous functions of t. Furthermore, since taking the maximum
value of a set of continuous functions is also a continuous
function, Lag1(t) is a continuous function of t. For similar
reasons, Lag2(t), Lag3(t), . . . , Lagn(t) are all continuous
functions of t as well.

We are now ready to prove our main theorem.

Theorem 1. At every time instant t ≥ 0, each inequality in
the set (B) holds.

Proof. Suppose, to the contrary, that the statement of the
theorem is not true, and let tc denote the first time instant
such that any inequality in (B) is false. We show that the
existence of tc leads to a contradiction.

Claim 1. tc > 0.

Proof. It follows by induction using (Y2) and (Y3)
(and our assumption from Sec. 2 that n ≥ m) that
xi > 0 for i = 1, 2, . . . ,m. By induction again,
this time using (X1), . . . , (Xm), it further follows that
βi > 0 for i = 1, 2, . . . ,m. Finally, by (Xm), (Xn),
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(Y1), and (Y2), βn = βm−1 + 2Cmax > 0. Thus, be-
cause Lagi(0) = 0 holds for all i, all of the inequali-
ties in (B) are true at time 0, implying that tc > 0.

Let t−c = tc − ε, where ε → 0+.6 By Claim 1, t−c ≥ 0,
i.e., t−c is well-defined. Because tc is the first time instant
at which any inequality in (B) is false, all such inequali-
ties hold prior to tc, including at time t−c . Also, because
the length of the interval [t−c , tc) is arbitrarily small, a task
scheduled on a processor at time t−c will be continuously
scheduled within [t−c , tc).

We call an inequality in (B) critical if and only if it is
false at time tc. If (Bk) is critical, then Lag1(t−c ) + · · · +
Lagk(t−c ) = βk. This is because (Bk) holds for any time in-
stant before tc but is falsified at tc and the left-hand-side of
(Bk) is a continuous function of t, by Property 1.7 We now
consider two cases, which depend on which inequalities are
critical.
Case 1: (Bn) is critical. In this case,

Lag1(t−c ) + Lag2(t−c ) + · · ·+ Lagn(t−c ) = βn. (16)

Therefore,

Lagm(t−c ) + Lagm+1(t−c ) + · · ·+ Lagn(t−c )

= {by (16)}
βn − (Lag1(t−c ) + Lag2(t−c ) + · · ·+ Lagm−1(t−c ))

≥ {because (Bm−1) holds at time t−c }
βn − βm−1

= {by (Xm), (Xn), (Y1), and (Y2)}
2Cmax. (17)

Furthermore, by definition, Lagm(t−c ) ≥ Lagm+1(t−c ) ≥
· · · ≥ Lagn(t−c ), so Lagm(t−c ) is at least the average of
these n−m+ 1 values. Therefore,

Lagm(t−c ) ≥
Lagm(t−c ) + Lagm+1(t−c ) + · · ·+ Lagn(t−c )

n−m+ 1

≥ {by (17)}
2Cmax

n−m+ 1

> {because Cmax > 0 and n ≥ m}
0. (18)

Because Lagm(t−c ) denotes the mth largest lag at time t−c ,
(18) implies that, at time t−c , at least m tasks have pos-
itive lag. Thus, by Lemma 1, at least m tasks are pend-

6ε does not have to be infinitely close to 0. Instead, it only needs to be a
sufficiently small positive constant. However, the criteria for “sufficiently
small” are rather tedious, so we merely define ε → 0+ here for simplic-
ity. Whenever ε is used, we will further elaborate on its definition in that
context.

7If Lag1(t
−
c ) + · · ·+ Lagk(t

−
c ) < βk , then a time t ∈ [t−c , tc) must

exist such that Lag1(t) + · · · + Lagk(t) = βk . Therefore, a smaller ε
could have been selected so that t−c = t.

ing at time t−c . Therefore, all of the m processors are
busy during the time interval [t−c , tc). Thus, by (6), the to-
tal lag in the system does not increase during the interval
[t−c , tc). That is, Lag1(tc) + Lag2(tc) + · · · + Lagn(tc) =∑n
i=1 lag(τi, tc,S) ≤

∑n
i=1 lag(τi, t

−
c ,S) = Lag1(t−c ) +

Lag2(t−c ) + · · ·+ Lagn(t−c ), which by (16), implies

Lag1(tc) + Lag2(tc) + · · ·+ Lagn(tc) ≤ βn.

This contradicts the assumption of Case 1 that (Bn) is criti-
cal.

Case 2: (Bk) is critical for some k such that 1 ≤ k ≤ m.
In this case,

Lag1(t−c ) + Lag2(t−c ) + · · ·+ Lagk(t−c ) = βk. (19)

Our proof for Case 2 utilizes a number of claims, which we
prove in turn.

Claim 2. Lagk(t−c ) ≥ xk.

Proof. If k = 1, then by (19), Lag1(t−c ) = β1. Also,
by (X1), β1 = x1, from which Lag1(t−c ) ≥ x1 fol-
lows. The remaining possibility, 2 ≤ k ≤ m, is ad-
dressed as follows.

Lagk(t−c )

= {by (19)}
βk − (Lag1(t−c ) + Lag2(t−c ) + · · ·+ Lagk−1(t−c ))

≥ {since (Bk−1) holds at time t−c }
βk − βk−1

= {by (Xk)}
xk

Claim 3. If k ≤ m− 1, then Lagk+1(t−c ) ≤ xk+1.

Proof. Because k ≤ m − 1 and (by assumption)
n ≥ m, Lagk+1(t−c ) is well-defined. The claim is
established by the following reasoning.

Lagk+1(t−c )

≤ {because (Bk+1) holds at time t−c }
βk+1 − (Lag1(t−c ) + Lag2(t−c ) + · · ·+ Lagk(t−c ))

= {by (19)}
βk+1 − βk

= {by (Xk+1)}
xk+1

Claim 4. If k = m and n > m, then Lagk+1(t−c ) ≤
0.

Proof. k = m implies that (19) can be re-written as

Lag1(t−c )+Lag2(t−c )+· · ·+Lagm(t−c ) = βm. (20)
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Also, because (Bn) holds at time t−c ,

Lag1(t−c ) +Lag2(t−c ) + · · ·+Lagn(t−c ) ≤ βn. (21)

Therefore, given n > m (from the statement of the
claim), by (20) and (21), we have

Lagm+1(t−c ) + Lagm+2(t−c )+

· · ·+ Lagn(t−c ) ≤ βn − βm. (22)

Therefore,

Lagm+1(t−c )

≤ {by (22)}
βn − βm − (Lagm+2(t−c ) + · · ·+ Lagn(t−c ))

≤ {by Lemma 3}
βn − βm − ((−Cmax) · (n−m− 1))

= {by (Xn) and (Y1)}
− (n−m− 1)Cmax + (n−m− 1)Cmax

= {canceling}
0. (23)

Because k = m, the claim follows from (23).

Claim 5. If k ≤ m− 1 or n > m, then Lagk(t−c ) ≥
ρ · Lagk+1(t−c ) + Cmax.

Proof. If k ≤ m− 1, then

Lagk(t−c ) ≥ {by Claim 2}
xk

= {by (Y3)}
ρ · xk+1 + Cmax

≥ {by Claim 3}
ρ · Lagk+1(t−c ) + Cmax. (24)

If k = m (recall that k ≤ m by the specification of
Case 2) and n > m, then by Claim 4,

Lagm+1(t−c ) ≤ 0. (25)

Furthermore,

Lagm(t−c ) ≥ {by Claim 2}
xm

= {by (Y2)}
(n−m+ 1)Cmax

> {because Cmax > 0 and n > m}
Cmax

≥ {by (25), and because ρ = u1/un > 0}
ρ · Lagm+1(t−c ) + Cmax. (26)

Thus, by (24) and (26) the claim follows.

In considering the next claim, recall the following: at

time t, Lag`(t) denotes the `th largest lag among all n tasks
and T`(t) denotes the set of ` tasks with largest lag values.

Claim 6. The k tasks in Tk(t−c ) are scheduled on the
k fastest processors within [t−c , tc).

Proof. Because ρ = u1/un ≥ 1 and (by assumption)
n ≥ m, by (Y2) and (Y3), it can be shown that xk ≥
Cmax for 1 ≤ k ≤ m. Therefore, by Claim 2, we
have Lagk(t−c ) ≥ xk ≥ Cmax > 0. By Lemma 1, this
implies that each of the k tasks in Tk(t−c ) is pending at
time t−c . Therefore, by Policy (G), it suffices to prove
that the k tasks in Tk(t−c ) have the k earliest effective
deadlines at time t−c (with no tie with the (k + 1)st

earliest effective deadline).8 If k = m and n = m,
then there are k tasks in total in the system. In this
case, the k pending tasks in Tk(t−c ) clearly have the k
earliest effective deadlines at time t−c .

In the rest of the proof, we consider the remaining
possibility, i.e., k ≤ m− 1 or n > m. By Claim 5,

Lagk(t−c ) ≥ ρ · Lagk+1(t−c ) + Cmax. (27)

By the definition of Lag, (27) implies that for any i
and j such that 1 ≤ i ≤ k and k + 1 ≤ j ≤ n, we
have Lagi(t

−
c ) ≥ ρ · Lagj(t−c ) + Cmax. This implies

that, for any task τp ∈ Tk(t−c ) and any task τq /∈
Tk(t−c ), lag(τp, t

−
c ,S) ≥ ρ · lag(τq, t

−
c ,S) + Cmax.

Therefore, if a task τq /∈ Tk(t−c ) is pending at time
t−c , then by Lemma 4, its effective deadline is strictly
greater than the effective deadline of any task τp ∈
Tk(t−c ); if τq is not pending at time t−c , then it has no
pending jobs and no effective deadline by definition.
Therefore, the k tasks in Tk(t−c ) have the k earliest
effective deadlines at time t−c . The claim follows.

Claim 7. Tk(t−c ) = Tk(tc).

Proof. If k = m and n = m, then there are k tasks in
total in the system, so the claim clearly holds. There-
fore, in the rest of the proof, we assume k ≤ m − 1
or n > m, which implies that either k ≤ m− 1 holds
or k = m and n > m hold, by the specification of
Case 2. If k ≤ m− 1, then

Lagk(t−c ) ≥ {by Claim 2}
xk

= {by (Y3)}
ρ · xk+1 + Cmax

≥ {because ρ = u1/un ≥ 1 and xk+1 ≥ 0}
xk+1 + Cmax

≥ {by Claim 3}
Lagk+1(t−c ) + Cmax. (28)

8Note that ε can be selected to be small enough to ensure that no
scheduling event happens within the interval [t−c , tc), including job com-
pletions. Therefore, any task scheduled at time t−c will continuously exe-
cute during time interval [t−c , tc) on the same processor.
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If k = m and n > m, then

Lagk(t−c ) ≥ {by Claim 2 and because k = m}
xm

= {by (Y2)}
(n−m+ 1)Cmax

> {because n > m}
Cmax

≥ {because Lagk+1(t−c ) ≤ 0, by Claim 4}
Lagk+1(t−c ) + Cmax. (29)

Thus, for k ≤ m− 1 or n > m, by (28) and (29), we
have

Lagk(t−c )− Lagk+1(t−c ) ≥ Cmax. (30)

By the definition of Lag, (30) implies that for any i
and j such that 1 ≤ i ≤ k and k + 1 ≤ j ≤ n, we
have Lagi(t

−
c )−Lagj(t−c ) ≥ Cmax. This implies that,

for any task τp ∈ Tk(t−c ) and any task τq /∈ Tk(t−c ),
we have

lag(τp, t
−
c ,S)− lag(τq, t

−
c ,S) ≥ Cmax. (31)

Therefore,

lag(τp, tc,S)− lag(τq, tc,S)

= {by (5)}
lag(τp, t

−
c ,S)+A(I, τp, t−c , tc)−A(S, τp, t−c , tc)

−lag(τq, t
−
c ,S)−A(I, τq, t−c , tc)+A(S, τq, t−c , tc)

≥ {by (1) and (2)}
lag(τp, t

−
c ,S)+0−ε·s1−lag(τq, t

−
c ,S)−ε·u1 + 0

≥ {by (31) and rearranging}
Cmax − ε · (s1 + u1)

> {because Cmax > 0 and ε < Cmax/(s1 + u1)}9

0.

Thus, at time tc, any task in Tk(t−c ) has a strictly
greater lag than any task not in Tk(t−c ). This implies
that Tk(tc) and Tk(t−c ) consist of the same set of
tasks.

By Claim 6 and Claim 7, the k tasks in Tk(tc) are con-
tinuously scheduled on the k fastest processor during time
interval [t−c , tc), so∑

τi∈Tk(tc)

A(S, τi, t−c , tc) = Sk · ε. (32)

9ε can be selected small enough to ensure ε < Cmax/(s1 + u1).

Also, by (2),∑
τi∈Tk(tc)

A(I, τi, t−c , tc) ≤
∑

τi∈Tk(tc)

ui · ε ≤ Uk · ε. (33)

Therefore,

Lag1(tc) + Lag2(tc) + · · ·+ Lagk(tc)

= {by Claim 7 and by (5)}
Lag1(t−c ) + Lag2(t−c ) + · · ·+ Lagk(t−c )+∑
τi∈Tk(tc)

A(I, τi, t−c , tc)−
∑

τi∈Tk(tc)

A(S, τi, t−c , tc)

≤ {by (32) and (33), and because (Bk) holds at time t−c }
βk + (Uk − Sk) · ε

≤ {by (6) and (7); note that Um ≤ Un}
βk.

This contradicts the assumption of Case 2 that (Bk) is criti-
cal.

Finishing up. We have shown that both Case 1 and Case
2 lead to a contradiction. That is, none of the conditions
(B1), . . . , (Bm), or (Bn) is critical at tc. This contradicts
the definition of tc as the first time instant at which some
inequality in (B) is false, i.e., such a tc does not exist. The
theorem follows.

Using Theorem 1, we can easily derive a tardiness bound
for every task as follows.

Theorem 2. In S, the tardiness ∆i of task τi is bounded as
follows.

If ρ = 1, then ∆i ≤
n · Cmax

ui
;

if ρ > 1, then

∆i ≤
ρm−1 · (n−m+ 1)Cmax + ρm−1−1

ρ−1 · Cmax

ui
.

Proof. By Theorem 1, Lag1(t) ≤ β1 holds at every time in-
stant t. By the definition of Lag1(t), this implies that, for
each i, lag(τi, t,S) ≤ β1 holds for all t. Thus, by Corol-
lary 1, task τi has a tardiness bound of β1/ui. By (X1),
β1 = x1, so to complete the proof, we merely need to cal-
culate x1.

If ρ = 1 (i.e., u1/un = 1, which implies that every task
has the same utilization), then by (Y3), x1 = xm + (m −
1)Cmax. Thus, by (Y2), we have x1 = n · Cmax.

If ρ > 1, then rearranging (Y3) results in

xi +
Cmax

ρ− 1
= ρ

(
xi+1 +

Cmax

ρ− 1

)
.

By iterating this recurrence, we have

x1 +
Cmax

ρ− 1
= ρm−1 ·

(
xm +

Cmax

ρ− 1

)
.
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Finally, applying (Y2) yields

x1 = ρm−1 · (n−m+ 1)Cmax +
ρm−1 − 1

ρ− 1
· Cmax.

The theorem follows.

Discussion. We comment here on several aspects of the tar-
diness bounds in Theorem 2.

First, it may seem counterintuitive that ui appears in the
denominator of both stated bounds, because this means that
the bounds are greater for tasks of lower utilization. This ef-
fect follows from our proof strategy, which involved bound-
ing the maximum lag value in the system. We allow that
any task may be the one that achieves this maximum value.
Given a fixed value of lag, a lower-utilization task will tend
to require greater tardiness to achieve that value of lag.

Second, the term ρm−1 appears in the second bound, i.e.,
the bound is exponential with respect to the processor count
m. Despite this deficiency, we have still succeeded in es-
tablishing for the first time that tardiness under GEDF is
bounded on uniform platforms. Moreover, global schedulers
tend to be practical in practice (i.e., have reasonable over-
heads) only for modest processor counts [2], so typically on
large multiprocessor platforms, such schedulers are applied
within clusters of processors that are not too large. In such
a setting, our bounds may be reasonable.

Third, the term ρ = u1/un appears in the second bound.
This bound could therefore be rather large if u1 � un.
Under a clustered-scheduling approach, this issue could be
eased by using heuristics to assign tasks with relatively sim-
ilar utilizations to the same cluster. Also, it might be pos-
sible to encapsulate several ordinary tasks into a higher-
utilization “container” task in a way that increases un. How-
ever, such an approach would warrant further study.

Extending to sporadic tasks. In this section, we have lim-
ited attention to periodic task systems satisfying Assump-
tion (A). However, it is possible to eliminate the need for
Assumption (A) and extend the results of this section to ap-
ply to sporadic task systems. Due to space constraints, we
consider these issues in an appendix.

4 Conclusion
In this paper, we have shown that the GEDF scheduler is
SRT optimal on uniform multiprocessor platforms, clos-
ing a longstanding open problem. Together with prior re-
sults establishing the non-optimality of NP-GEDF in this
context [16], we now have a complete picture concerning
the SRT optimality of both preemptive and non-preemptive
GEDF on uniform platforms.

We established the SRT optimality of GEDF in the con-
sidered context by deriving tardiness bounds for any spo-
radic task system that is feasible according to the con-
straints specified in (6) and (7). The key to this optimality
result proved to be finding a way to work these constraints
into the argument. The need to exploit the constraints in
(7) in particular resulted in the necessity for a proof strat-

egy that is very different from that which had been em-
ployed previously in similar work pertaining to identical
platforms [5, 12].

The establishment of tardiness bounds under GEDF on
identical platforms [5] led to follow-up work in which such
bounds were derived for a broader class of schedulers (par-
ticularly, “window-constrained” schedulers) [12] and for
schedulers that must function in settings where processor
supply is only partially available [11]. In future work, we
plan to consider similar extensions to the analysis presented
in this paper. We also plan to investigate whether tighter tar-
diness bounds can be obtained generally and whether such
bounds can be further honed if processors of only two dif-
ferent speeds exist.
Acknowledgement: In the three years we have been work-
ing on the open problem addressed herein, we have dis-
cussed it with many people. Discussions with Zhishan Guo
and Rui Liu were particularly helpful.
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Appendix A: Extending to Sporadic Tasks
In this appendix, we show that the results of Sec. 3 can be
extended to sporadic task systems. We begin by showing
that Assumption (A) can be removed for periodic task sys-
tems.
Theorem 3. For a given periodic task set τ , let S denote a
GEDF schedule that satisfies (A), and let S ′ denote a cor-
responding GEDF schedule where (A) does not hold (“cor-
responding” means that S and S ′ include exactly the same
jobs, released at exactly the same time instants). Then, no
job finishes later in S ′.
Proof. We prove the theorem by considering jobs induc-
tively in deadline order. (We assume that deadline ties are
broken the same way in both schedules.) Note that, by Pol-
icy (G), the scheduling of a given job is not impacted by any
lower priority jobs.
Base case. The highest-priority job will execute continu-
ously on the fastest processor once released, so it cannot
finish later in S ′.
Inductive step. Let J denote the set of k highest-priority
jobs, and assume that these jobs do not finish later in S ′.
Also, let J denote the (k + 1)st highest-priority job. We
show that J also does not finish later in S ′.

Since no job in J finishes later in S ′, at any time instant
t, the number of ready jobs in S ′ does not increase10 com-
pared to S. Therefore, by Policy (G), up to any time instant
t after its release, J is allocated in S ′ no less computing ca-
pacity than in S, unless J has completed in S ′ but not in S
prior to time t. Finally, because J’s execution requirement
is no greater in S ′ than in S, it cannot finish later in S ′.

Theorem 3 implies that the tardiness bounds stated in
Theorem 2 also apply to periodic tasks without Assumption
(A). We next show that they also apply to sporadic tasks.

For this purpose, we introduce a new task model, which
we call the varying-period periodic (VPP) task model. An
implicit-deadline VPP task τVi has a pre-defined utiliza-
tion uVi and also releases a sequence of jobs. However, in
contrast to the ordinary periodic task model, each VPP job
JVi,j has its own worst-case execution requirement, denoted
Ci,j . After its first invocation, a VPP task τVi will release
each job JVi,j+1 exactly Ti,j = Ci,j/ui time units after
JVi,j’s release. Also, each job JVi,j has a deadline Ti,j time
units after its release. For each VPP task τVi , CVi is de-
fined as CVi = max{Ci,j | j ≥ 1} and TVi is defined as
TVi = max{Ti,j | j ≥ 1}. Note that an ordinary periodic
task τi is a special case of a VPP task where Ci,j = Ci,k
holds (and hence Ti,j = Ti,k holds) for any j and k.
VPP tasks with Assumption (A). Given Assumption
(A),11 a VPP task set will have exactly the same ideal sched-
ule as the corresponding ordinary periodic task set that in-

10To see this, note that, if a job J ′ in J is not ready in S but ready in
S′ at time t, then J ′ must be pending at time t in both S and S′, and some
preceding job of the same task must be ready in S but completed in S′.

11That is, every VPP job JV
i,j executes for exactly its execution require-

ment Ci,j .

cludes the same tasks as in the VPP task set, where each
such task has the same utilization as in the VPP task set,
and releases its first jobs at the same time as in the VPP
task set. Given this observation, we can re-work the proof
in Sec. 3, assuming the VPP task model instead of the
ordinary periodic one. In particular, with few exceptions
(see below), every lemma, property, claim, and theorem
in Sec. 3 can be literally re-stated and re-proved to per-
tain to VPP tasks (with Assumption (A)) by replacing Ci,
Ti, and Cmax by CVi , TVi , and CVmax, respectively, where
CVmax = max{CVi | 1 ≤ i ≤ n}.

The only modification that is a bit tricky is that, in the
proof of Lemma 2, (9) and (10) should not be re-written as
0 < ei(t) ≤ CVi and A(S, τi, 0, t) = W + CVi − ei(t),
respectively, because the latter might not necessarily be
true even with Assumption (A). Instead, they should be re-
written as 0 < ei(t) ≤ Ci,j and A(S, τi, 0, t) = W +
Ci,j − ei(t), respectively. Then, (12) should be re-written
as (t − di(t))ui < lag(τi, t,S) ≤ (t − di(t))ui + Ci,j ,
which implies

t− lag(τi, t,S)

ui
< di(t) ≤ t−

lag(τi, t,S)

ui
+ Ti,j .

Finally, by definition, because TVi ≥ Ti,j , we can obtain

t− lag(τi, t,S)

ui
< di(t) ≤ t−

lag(τi, t,S)

ui
+ TVi .

After re-working all of the proofs in Sec. 3, the following
theorem, which is the VPP counterpart to Theorem 2, can be
proven, assuming Assumption (A).

Theorem 4. In S, the tardiness ∆V
i of VPP task τVi is

bounded as follows.

If ρ = 1, then ∆V
i ≤

n · CVmax

ui
;

if ρ > 1, then

∆V
i ≤

ρm−1 · (n−m+ 1)CVmax + ρm−1−1
ρ−1 · CVmax

ui
.

Because it would be almost identical to the proofs in
Sec. 3, we do not provide a full proof of this theorem here.
As an alternative, we could have considered only the VPP
task model in Sec. 3, but this would have further compli-
cated the proof there, both conceptually and notationally.
VPP tasks without the Assumption (A). Notice that The-
orem 3 was established by reasoning only about jobs: it does
not matter whether task periods are constant or variable.
Thus, by Theorem 3, Theorem 4 also holds for VPP tasks
without Assumption (A).
Sporadic tasks. We now show that tardiness bounds can
be determined for any sporadic task set by viewing any in-
stance12 of such a task set as an instance of a VPP task set

12An instance of a task set is defined by specifying a set of concrete job
release times and actual execution requirements in accordance with each
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Figure 1: Transforming a sporadic task into a VPP task.

where Assumption (A) may not hold. The transformation to
a VPP task set is depicted in Fig. 1 and explained next.

In the sporadic task model, a task τi = (Ci, Ti) might
have two consecutive jobs that have a release separation of
more than Ti time units. Let Ji,j and Ji,j+1 be such two
jobs, i.e., ai,j+1 − ai,j > Ti. Let us denote ai,j+1 − ai,j
as (k + 1)Ti + r where k is an integer such that k ≥ 0
and r is a real number such that 0 ≤ r < Ti (k and r
can be easily calculated from ai,j+1 − ai,j). To transform
to a VPP task, we add k jobs, with the `th one released at
time ai,j + ` · Ti for 1 ≤ ` ≤ k, all with a worst-case
execution requirement of Ci, plus an additional job, if r >
0, released at time ai,j+1−r, where this job has a worst-case
execution requirement of r ·Ci/Ti. We do this for every task
τi whenever ai,j+1 − ai,j > Ti holds for two consecutive
job releases ai,j and ai,j+1. The resulting task set a VPP
task set, where each VPP task τVi has the parameters uVi =
Ci/Ti, CVi = Ci, and TVi = Ti. Now, to complete the
transformation, we can simply define the actual execution
requirement of each added job to be zero.

As we discussed earlier, Theorem 4 holds for VPP tasks
without Assumption (A). Thus, the tardiness bounds in The-
orem 4 apply to every instance of a VPP task set resulting
from the transformation process above, and therefore to ev-
ery instance of the original sporadic task set. By substituting
the notation pertaining to the original sporadic task set into
Theorem 4, it follows that the tardiness bounds in Theo-
rem 2 hold for sporadic tasks as well.

Appendix B: Level Algorithm
The Level Algorithm was proposed by Horvath et al. [10]
for scheduling a set of one-shot jobs on a uniform multipro-
cessor and minimizing makespan, i.e., the time required for
finishing all jobs. A job’s level is defined by its remaining
execution time. The greater a job’s level, the faster the pro-
cessor on which it is scheduled, and all jobs that attain the
same level are thereafter jointly executed, equally sharing
the processors on which they are scheduled. The following
example illustrates the Level Algorithm.
Ex. 1. Consider using the Level Algorithm to schedule four
jobs, with execution requirements J1 = 12, J2 = 12,
J3 = 8.5, and J4 = 7.5, on a uniform platform π =
{s1 = 4, s2 = 3, s3 = 2, s4 = 1}. J1 and J2 have the same

task’s specification.

J1, J2

J3, J4

J1, J2, J3, J4

0 1 2 3 4
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time
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(a) Conceptual Level Algorithm schedule
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(b) Real schedule for “jointly execute”
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J2

J3

J4

J4

J3

(c) Real schedule for all jobs

Figure 2: Level Algorithm resulting schedule for Ex. 1.

execution cost, or level, so they are jointly executed from
the beginning; J3 and J4 attain the same level at time 1, so
they are jointly executed after time 1. At time 2, all jobs at-
tain the same level, and hence all jobs are jointly executed
afterward. Fig. 2(a) shows the resulting schedule produced
by the Level Algorithm for this example. Fig. 2(b) shows
the real schedule for “jointly executing.” Fig. 2(c) shows
the real schedule for all four considered jobs.

As proposed in [8], implicit-deadline periodic tasks can
be supported by applying the Level Algorithm to consecu-
tive small time intervals of length δ, ensuring that each task
τi executes for ui · δ time units in each such interval. For
example, four tasks with utilizations u1 = 12, u2 = 12,
u3 = 8.5, and u4 = 7.5 would have a schedule similar to
Fig. 2(c) during each δ-length time interval. In order to guar-
antee HRT correctness, δ must evenly divide all periods.

As seen in Ex. 1, the Level Algorithm is quite com-
plicated, requiring a sophisticated implementation, and is
prone to producing frequent preemptions and migrations.
Furthermore, in a dynamic system, the schedule would need
to be re-calculated every time a task joins or leaves the sys-
tem. GEDF can be much more easily used in such a context.
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