
Making OpenVX Really “Real Time”∗

Ming Yang1, Tanya Amert1, Kecheng Yang1,2, Nathan Otterness1, James H. Anderson1, F. Donelson Smith1, and Shige Wang3
1University of North Carolina at Chapel Hill 2Texas State University 3General Motors Research

Abstract
OpenVX is a recently ratified standard that was expressly
proposed to facilitate the design of computer-vision (CV)
applications used in real-time embedded systems. Despite its
real-time focus, OpenVX presents several challenges when
validating real-time constraints. Many of these challenges
are rooted in the fact that OpenVX only implicitly defines
any notion of a schedulable entity. Under OpenVX, CV ap-
plications are specified in the form of processing graphs
that are inherently considered to execute monolithically end-
to-end. This monolithic execution hinders parallelism and
can lead to significant processing-capacity loss. Prior work
partially addressed this problem by treating graph nodes as
schedulable entities, but under OpenVX, these nodes repre-
sent rather coarse-grained CV functions, so the available
parallelism that can be obtained in this way is quite lim-
ited. In this paper, a much more fine-grained approach for
scheduling OpenVX graphs is proposed. This approach was
designed to enable additional parallelism and to eliminate
schedulability-related processing-capacity loss that arises
when programs execute on both CPUs and graphics pro-
cessing units (GPUs). Response-time analysis for this new
approach is presented and its efficacy is evaluated via a case
study involving an actual CV application.

1 Introduction
The push towards deploying autonomous-driving capabil-
ities in vehicles is happening at breakneck speed. Semi-
autonomous features are becoming increasingly common,
and fully autonomous vehicles at mass-market scales are on
the horizon. In realizing these features, computer-vision (CV)
techniques have loomed large. Looking forward, such tech-
niques will continue to be of importance as cameras are both
cost-effective sensors (an important concern in mass-market
vehicles) and a rich source of environmental perception.

To facilitate the development of CV techniques, the
Kronos Group has put forth a ratified standard called
OpenVX [42]. Although initially released only four years
ago, OpenVX has quickly emerged as the CV API of choice
for real-time embedded systems, which are the standard’s
intended focus. Under OpenVX, CV computations are rep-
resented as directed graphs, where graph nodes represent
high-level CV functions and graph edges represent prece-
dence and data dependencies across functions. OpenVX can
be applied across a diversity of hardware platforms. In this

∗Work supported by NSF grants CNS 1409175, CPS 1446631, CNS
1563845, and CNS 1717589, ARO grant W911NF-17-1-0294, and funding
from General Motors.

paper, we consider its use on platforms where graphics pro-
cessing units (GPUs) are used to accelerate CV processing.

Unfortunately, OpenVX’s alleged real-time focus reveals
a disconnect between CV researchers and the needs of the
real-time applications where their work would be applied.
In particular, OpenVX lacks concepts relevant to real-time
analysis such as priorities and graph invocation rates, so it is
debatable as to whether it really does target real-time systems.
More troublingly, OpenVX implicitly treats entire graphs as
monolithic schedulable entities. This inhibits parallelism1

and can result in significant processing-capacity loss in set-
tings (like autonomous vehicles) where many computations
must be multiplexed onto a common hardware platform.

In prior work, our research group partially addressed these
issues by proposing a new OpenVX variant in which individ-
ual graph nodes are treated as schedulable entities [23, 51].
This variant allows greater parallelism and enables end-to-
end graph response-time bounds to be computed. However,
graph nodes remain as high-level CV functions, which is
problematic for (at least) two reasons. First, these high-level
nodes still execute sequentially, so some parallelism is still
potentially inhibited. Second, such a node will typically in-
volve executing on both a CPU and a GPU. When a node
accesses a GPU, it suspends from its assigned CPU. Sus-
pensions are notoriously difficult to handle in schedulability
analysis without inducing significant capacity loss.

Contributions. In this paper, we show that these problems
can be addressed through more fine-grained scheduling of
OpenVX graphs. Our specific contributions are threefold.

First, we show how to transform the coarse-grained
OpenVX graphs proposed in our group’s prior work [23, 51]
to fine-grained variants in which each node accesses either a
CPU or a GPU (but not both). Such transformations elimi-
nate suspension-related analysis difficulties at the expense
of (minor) overheads caused by the need to manage data
sharing. Additionally, our transformation process exposes
new potential parallelism at many levels. For example, be-
cause we decompose a coarse-grained OpenVX node into
finer-grained schedulable entities, portions of such a node
can now execute in parallel. Also, we allow not only succes-
sive invocations of the same graph to execute in parallel but
even successive invocations of the same (fine-grained) node.

Second, we explain how prior work on scheduling pro-
cessing graphs and determining end-to-end graph response-
time bounds can be adapted to apply to our fine-grained

1As discussed in Sec. 3, a recently proposed extension [18] enables
more parallelism, but this extension is directed at throughput, not real-time
predictability, and is not available in any current OpenVX implementation.



OpenVX graphs. The required adaptation requires new anal-
ysis for determining response-time bounds for GPU compu-
tations. We show how to compute such bounds for recent
NVIDIA GPUs by leveraging recent work by our group on
the functioning of these GPUs [1]. Our analysis shows that
allowing invocations of the same graph node to execute in
parallel is crucial in avoiding extreme capacity loss.

Third, we present the results of case-study experiments
conducted to assess the efficacy of our fine-grained graph-
scheduling approach. In these experiments, we considered
six instances of an OpenVX-implemented CV application
called HOG (histogram of oriented gradients), which is used
in pedestrian detection, as scheduled on a multicore+GPU
platform. These instances reflect a scenario where multiple
camera feeds must be supported. We compared both analyti-
cal response-time bounds and observed response times for
HOG under coarse- vs. fine-grained graph scheduling. We
found that bounded response times could be guaranteed for
all six camera feeds only under fine-grained scheduling. In
fact, under coarse-grained scheduling, just one camera could
(barely) be supported. We also found that observed response
times were substantially lower under fine-grained scheduling.
Additionally, we found that the overhead introduced by con-
verting from a coarse-grained graph to a fine-grained one had
modest impact. These results demonstrate the importance of
enabling fine-grained scheduling in OpenVX if real time is
really a first-class concern.
Organization. In the rest of the paper, we provided needed
background (Sec. 2), describe our new fine-grained schedul-
ing approach (Sec. 3), present the above-mentioned GPU
response-time analysis (Sec. 4) and case study (Sec. 5), dis-
cuss related work (Sec. 6), and conclude (Sec. 7).

2 Background
In this section, we review prior relevant work on the real-
time scheduling of DAGs and explain how this work was ap-
plied previously for coarse-grained OpenVX graph schedul-
ing [23, 51]. The prior scheduling work of relevance takes
considerable space to cover, so for the time being, we fo-
cus on generic (perhaps non-OpenVX) DAGs. Our review
of this prior work draws heavily from a previous paper by
three of the authors [52]. We specifically consider a system
G = {G1, G2, . . . , GN} comprised of N DAGs. The DAG
Gi consists of ni nodes, which correspond to ni sequential
tasks τ i1, τ

i
2, . . . , τ

i
ni . Each task τ iv releases a (potentially infi-

nite) sequence of jobs τ iv,1,τ iv,2, . . .. The edges in Gi reflect
precedence relationships. A particular task τ iv’s predecessors
are those tasks with outgoing edges directed to τ iv, and its
successors are those with incoming edges directed from τ iv .

The jth job of task τ iv, τ iv,j , cannot commence execution
until the jth jobs of all of its predecessors finish. Such de-
pendencies only exist for the same invocation of a DAG, not
across invocations. That is, while jobs are sequential, intra-
task parallelism (i.e., parallel node invocation) is possible:
successive jobs of a task are allowed to execute in parallel.

Ex. 1. Consider DAG G1 in Fig. 1. Task τ14 ’s predecessors
are tasks τ12 and τ13 , i.e., for any j, job τ14,j waits for jobs τ12,j
and τ13,j to finish. If intra-task parallelism is allowed, then
τ14,j and τ14,j+1 could execute in parallel. ♦

4

1

32

1

1 1

1

Figure 1: DAG G1.

For simplicity, we assume that
each DAG Gi has exactly one source
task τ i1, with only outgoing edges,
and one sink task τ ini , with only
incoming edges. Multi-source/multi-
sink DAGs can be supported with the
addition of singular “virtual” sources and sinks that connect
multiple sources and sinks, respectively. Virtual sources and
sinks have a worst-case execution time (WCET) of zero.

Source tasks are released sporadically, i.e., for the DAG
Gi, the job releases of τ i1 have a minimum separation time, or
period, denoted T i. A non-source task τ iv (v > 1) releases
its jth job τ iv,j after the jth jobs of all its predecessors in
Gi have completed. That is, letting riv,j and f iv,j denote
the release and finish times of τ iv,j , respectively, riv,j ≥
max{f iw,j | τ iw is a predecessor of τ iv}. The response time of
job τ iv,j is defined as f iv,j−riv,j , and the end-to-end response
time of the jth invocation of the DAG Gi as f ini,j − r

i
1,j .

Deriving response-time bounds. An end-to-end response-
time bound can be computed inductively for a DAG Gi

by scheduling its nodes in a way that allows them to be
viewed as sporadic tasks and by then leveraging response-
time bounds applicable to such tasks. When viewing nodes
as sporadic tasks, precedence constraints must be respected.
This can be ensured by assigning an offset Φiv to each task τ iv
based on the response-time bounds applicable to “up-stream”
tasks in Gi, and by requiring the jth job of τ iv to be released
exactly Φiv time units after the release time of the jth job of
the source task τ i1, i.e., riv,j = ri1,j+Φiv,where Φi1 = 0. With
offsets so defined, every task τ iv in Gi (not just the source)
has a period of Ti. Also, letting Civ denote the WCET of τ iv ,
its utilization can be defined as uiv = Civ/T

i.
Ex. 1 (cont’d). Fig. 2 depicts an example schedule for the
DAG G1 in Fig. 1. The first (resp., second) job of each task
has a lighter (resp., darker) shading to make them easier to
distinguish. Assume that the tasks have deadlines as shown,
and response-time bounds of R1

1 = 9, R1
2 = 5, R1

3 = 7,
and R1

4 = 9, respectively. Based on these bounds, we de-
fine corresponding offsets Φ1

1 = 0, Φ1
2 = 9, Φ1

3 = 9, and
Φ1

4 = 16, respectively. With these response-time bounds, the
end-to-end response-time bound that can be guaranteed is
determined byR1

1,R1
3, andR1

4 and is given byR1 = 25. The
task response-time bounds used here depend on the sched-
uler employed. For example, if all tasks are scheduled via the
global earliest-deadline-first (G-EDF) scheduler, then per-
task response-time bounds can be determined from tardiness
analysis for G-EDF [20, 24]. In fact, this statement applies
to any G-EDF-like (GEL) scheduler [25].2 Such schedulers

2Under such a scheduler, each job has a priority point within a constant
distance of its release; an earliest-priority-point-first order is assumed.



Time0

(Assume depicted jobs are scheduled alongside other jobs, which are not shown.) 

τ1

1

5 10 15

R1
1

R2

1

R3
1

R4

1

Φ1 = 0
1

Φ2

1

R : the end-to-end response-time bound for G

20 25 30

Job Release Job Deadline Job Completion CPU Execution

end-to-end response time of invocation 1

end-to-end response time of invocation 2

Φ3

1

Φ4

1

τ2

1

τ3

1

τ4

1

1 1

Figure 2: Example schedule of the tasks in G1 in Fig. 1.

will be our focus. Recall that, according to the DAG-based
task model introduced here, successive jobs of the same task
might execute in parallel. We see this with jobs τ14,1 and τ14,2
in the interval [23, 24). Such jobs could even finish out of
release-time order due to execution-time variations. ♦

Early releasing. Using offsets may cause non-work-con-
serving behavior: a given job may be unable to execute even
though all of its predecessor jobs have completed. Under any
GEL scheduler, work-conserving behavior can be restored
in such a case without altering response-time bounds [20, 24,
25] via a technique called early releasing [2], which allows
a job to execute “early,” before its “actual” release time.

Schedulability. For DAGs as considered here, schedulabil-
ity conditions for ensuring bounded responses times hinge
on conditions for ensuring bounded tardiness under GEL
scheduling. Assuming a CPU-only platform with M proces-
sors, if intra-task parallelism is forbidden, then the required
conditions are uiv ≤ 1 for each v and

∑
uiv ≤ M [20, 25].

On the other hand, if arbitrary intra-task parallelism is al-
lowed, then only

∑
uiv ≤ M is required and per-task uti-

lizations can exceed 1.0 [24, 25]. These conditions remain
unaltered if arbitrary early releasing is allowed.

Coarse-grained OpenVX graphs. In two prior papers by
our group [23, 51], the techniques described above, but
without intra-task parallelism, are proposed for scheduling
acyclic3 OpenVX graphs using G-EDF,4 with graph nodes
implicitly defined by high-level OpenVX CV functions. We
call OpenVX graphs so scheduled coarse-grained graphs.

Given the nature of high-level CV functions, the nodes
of a coarse-grained graph will typically involve executing
both CPU code and GPU code. Executing GPU code can

3As described in these papers, cycles can be dealt with by relaxing graph
constraints or by combining certain nodes into “super-nodes.” Adapting
these techniques to our context is beyond the scope of this paper.

4While G-EDF was the focus of [51], in experiments presented in [23],
real-time work was limited to execute on one socket of a multi-socket
machine and thus was only globally scheduled within a socket.

introduce task suspensions, and under G-EDF schedula-
bility analysis, suspensions are typically dealt with using
suspension-oblivious analysis [15]. This entails analytically
viewing suspension time as CPU computation time and can
result in significant processing-capacity loss.

3 Fine-Grained OpenVX Graph Scheduling
In this section, we propose a fine-grained scheduling ap-
proach for OpenVX graphs obtained by applying four tech-
niques. First, to eliminate suspension-based capacity loss,
we treat CPU code and GPU code as separate graph nodes.
Second, to reduce response-time bounds, we allow intra-task
parallelism. Third, to avoid non-work-conserving behavior
and enable better observed response times, we allow early
releasing. Finally, we use a scheduler (namely, G-FL—see
below) that offers advantages over G-EDF. We elaborate on
these techniques in turn below after first providing a brief
introduction to GPU programming using CUDA.
CUDA basics. The general structure of a CUDA program
is as follows: (i) allocate necessary memory on the GPU;
(ii) copy input data from the CPU to the GPU; (iii) execute
a GPU program called a kernel 5 to process the data; (iv)
copy the results from the GPU back to the CPU; (v) free
unneeded memory. To handle data dependencies, CUDA
provides a set of synchronization functions. For example,
such a function would be invoked between steps (iii) and (iv).
These functions are configured on a per-device basis to wait
via spinning or suspending. In this paper, we consider only
waiting by suspending because the kernel executions in the
workloads of interest are too long for spinning to be viable.
DAG nodes as CPU or GPU nodes. In our fine-grained
scheduling approach, we avoid suspension-related capacity
loss due to kernel executions by more finely decomposing
an OpenVX graph so that each of its nodes is either a CPU
node or a GPU node that executes a kernel. Additionally, we
distinguish between regular CPU nodes and the necessary
CPU work to launch a GPU kernel and await its results.
In this paper, we assume that copy operations are included
in CPU nodes. In the workloads of interest to us, copies
are short, so any resulting suspension-based capacity loss
is minor. More lengthy copies could instead be handled as
separate nodes, similarly to how we handle kernels.

In the rest of this section, we use a continuing example to
illustrate various nuances of our fine-grained approach.
Ex. 2. Fig. 3(a) depicts a simple coarse-grained graph com-
prised of two tasks, τ2x and τ2y . Fig. 3(b) shows a fine-grained
representation of this same graph. Task τ2x is a simple CPU-
only CV function and is represented by one fine-grained
CPU task, τ21 . τ2y is more complex, and its fine-grained rep-
resentation consists of six tasks, τ22 , · · · , τ27 , where τ25 is a
GPU task, and τ24 and τ26 are CPU tasks that launch the GPU
kernel and await its completion, respectively.6 ♦

5Unfortunate terminology, not to be confused with an OS kernel.
6The synchronization call to await results may be launched before the

GPU kernel has completed, but this overhead is extremely short.



Wx

W1
2

W3
2

W7
2W2

2

(a)

(b)

W4
2 W5

2 W6
2

2 Wy
2

CPU Execution GPU ExecutionCPU+GPU Execution

Figure 3: (a) Coarse- and (b) fine-grained representations of the
same DAG G2. τ2x is simple sequential CPU code, so it is repre-
sented by one fine-grained task. τ2y is more complex and consists
of both CPU and GPU parts, some of which can execute in parallel.

An end-to-end response-time bound for a fine-grained
graph can be obtained from per-node bounds as discussed
in Sec. 2, with the copy operations in CPU nodes dealt with
using suspension-oblivious analysis. For GPU nodes, new
analysis is needed, which we provide for NVIDIA GPUs
in Sec. 4.7 Note that, in work on the prior coarse-grained
approach [23, 51], locking protocols were used to preclude
concurrent GPU access, obviating the need for such analysis.
Ex. 2 (cont’d). Possible schedules for the graphs in Fig. 3
are depicted in Fig. 4. As before, successive jobs of the same
task are shaded differently to make them easier to distinguish.
Recall from Sec. 2 that all tasks in a graph share the same
period; in these schedules, all periods are 5 time units, shown
as the time between successive job release times (up arrows).

Fig. 4(a) depicts the graph’s schedule as a single mono-
lithic entity, as implied by the OpenVX standard. OpenVX
lacks any notion of real-time deadlines or phases, so these
are excluded here, as is a response-time bound. The depicted
schedule is a bit optimistic because the competing workload
does not prevent the graph from being scheduled continu-
ously. Under monolithic scheduling, the entire graph must
complete before a new invocation can begin. As a result, the
second invocation does not finish until just before time 28.

Fig. 4(b) depicts coarse-grained scheduling as proposed
in prior work [23, 51], where graph nodes correspond to
high-level CV functions, as in Fig. 3(a). Nodes can execute in
parallel. For example, τ2y,1 and τ2x,2 do so in the interval [5, 6).
However, intra-task parallelism is not allowed: τ2y,2 cannot
begin until τ2y,1 completes, even though its predecessor (τ2x,2)
is finished. Note that, under coarse-grained scheduling, GPU
execution time is also analytically viewed is CPU execution
time using suspension-oblivious analysis. This analytical
impact is not represented in the figure.

Fig. 4(c) depicts a fine-grained schedule for the graph in
Fig. 3(b), but without intra-task parallelism. In comparing
insets (b) and (c), the difference is that nodes are now more
fine-grained, enabling greater concurrency. As a result, τ27,2
completes earlier, at time 25. The detriments of suspension-
oblivious analysis for GPU kernels are also now avoided. ♦

Intra-task parallelism. Our notion of fine-grained graph
scheduling allows intra-task parallelism, i.e., consecutive

7Response times for copies, if handled as separate nodes, are trivial to
bound because they are FIFO-scheduled.

τ4

τ1

τ2

τ5

τ6

τ7

2

2

τ3
2

2

Φ4
2

Φ3
2

R1

R2
2

Φ1 = 02

Φ2

2

2

2

2

2

R3
2

R4
2

R5
2

R6
2

Φ7
2

Φ5
2

Φ6
2

R : the end-to-end response-time bound for G

R7
2

0

(Assume depicted jobs are scheduled alongside other jobs, which are not shown.
Also, job deadlines are omitted to avoid clutter.) 

5 10 15 20 25 30

Job Release Job Completion CPU Execution

Time35

GPU Execution

τ1
2

2

τ3
2

τ4
2

τ2

Φ4
2

Φ3
2

R1

R2
2

Φ1 = 02

Φ2

2

2

τ5
2

τ6
2

τ7
2

R3
2

R4
2

R5
2

R6
2

Φ7
2

Φ5
2

Φ6
2 R7

2

R : the end-to-end response-time bound for G

Rx

Φx = 02

Φy

2

τx

τy

2

2

2

Ry
2

R : the end-to-end response-time bound for G

(a)
G

(b)

(c)

(d)

Concurrent 
CPU and GPU 

execution

Intra-task parallelism
(although not depicted, 

this enables lower 
response-time bounds)

GPU time 
modeled as 
CPU time

2

2 2

2 2

2 2

Figure 4: Example schedules of the tasks corresponding to the DAG-
based tasks in G2 in Fig. 3. (a) Monolithic scheduling. (b) Coarse-
grained scheduling as in prior work. Fine-grained scheduling as
proposed here (c) without and (d) with intra-task parallelism.

jobs of the same task may execute in parallel. Such paral-
lelism can cause successive invocations of the same graph to
complete out of order. This can be rectified via buffering.8

8The buffer size can be determined based on the calculated response-
time bounds.



Ex. 2 (cont’d). Lower response times are enabled by intra-
task parallelism, as depicted in Fig. 4(d). In this schedule,
τ23,1 and τ27,1 are able to execute in parallel with their prede-
cessors τ23,2 and τ27,2, respectively, reducing the completion
time of τ27,2 to time 23. Observe that τ27,2 completes before
τ27,1, so some output buffering would be needed here. ♦

Allowing intra-task parallelism has an even greater impact
on analytically derived response-time bounds [24], and as
noted earlier, enables task utilizations to exceed 1.0.

Early releasing. Although omitted in Fig. 4 for clarity, early
releasing can decrease observed response times without af-
fecting analytical bounds.
Ex. 2 (cont’d). Allowing τ27,1 to be early released once τ26,1
completes in Fig. 4(d) reduces the overall graph’s completion
time to just under 23 time units. ♦

G-FL scheduling. The approach in Sec. 2 applies to any
GEL scheduler. As shown in [25], the global fair-lateness
(G-FL) scheduler is the “best” GEL scheduler with respect
to tardiness bounds. We therefore perform CPU scheduling
using G-FL instead of G-EDF.9

Periods. An additional benefit of fine-grained scheduling is
that it allows for shorter periods.
Ex. 2 (cont’d). The period used in Fig. 4 seems reasonable
in insets (c) and (d): notice that each job finishes before or
close to its task’s next job release. In contrast, in insets (a)
and (b), response times could easily be unbounded. ♦

Recently proposed OpenVX extensions. The Kronos
Group recently released the OpenVX Graph Pipelining,
Streaming, and Batch Processing Extension [43], which en-
ables greater parallelism in OpenVX graph executions. How-
ever, this extension is not available in any current OpenVX
implementation and still lacks concepts necessary for en-
suring real-time schedulability. While we have not specifi-
cally targeted this extension, an ancillary contribution of our
work is to provide these needed concepts. In particular, the
parallelism enabled by this extension’s pipelining feature is
actually subsumed by that allowed in our fine-grained graphs.
Furthermore, the batching feature allows a node to process
multiple frames instead of just one, potentially increasing
computation cost; this could increase the node’s utilization,
possibly even exceeding 1.0. Introducing intra-task paral-
lelism as we have done enables such nodes to be supported
while still ensuring schedulability.

Rest of the paper. Despite the potential benefits of fine-
grained scheduling described above, additional issues remain.
First, as noted earlier, response-time bounds for GPU nodes
are needed in order to compute end-to-end response-time
bounds. We derive such bounds for NVIDIA GPUs in Sec. 4.
Second, decomposing a coarse-grained graph node into a
set of fine-grained ones can introduce additional overhead

9As explained in Sec. 5, we actually consider two variants of G-FL, a
“clustered” variant in which G-FL is applied on a per-socket basis on our
test platform, and a fully global variant that is applied across all sockets.

due to data sharing. We examine this issue via a case study
in Sec. 5. In this study, we also compare both analytical
response-time bounds and observed response times under
coarse- vs. fine-grained scheduling.

4 GPU Response-Time Bound
In this section, we derive a response-time bound for tasks
executing on NVIDIA GPUs. To facilitate this, we first intro-
duce additional background relating to NVIDIA GPUs.

4.1 NVIDIA GPU Details
The compute units of NVIDIA GPUs are streaming multi-
proccessors (SMs), typically comprised of 64 or 128 physical
GPU cores. The SMs together can be logically viewed as
an execution engine (EE). Execution on these GPUs is con-
strained by the number of available GPU threads, which we
call G-threads to distinguish from CPU threads; on current
NVIDIA GPUs, there are 2,048 G-threads per SM.

CUDA programs submit work to a GPU as kernels. A
kernel is run on the GPU as a series of thread blocks. These
thread blocks, or simply blocks, are each comprised of a
number of G-threads. The number of blocks and G-threads
per block (i.e., the block size) are set at runtime when a kernel
is launched. The GPU scheduler uses these values to assign
work to the GPU’s SMs. Blocks are the schedulable entities
on the GPU. All G-threads in a block are always scheduled
on the same SM, and execute non-preemptively.

K2

EE Queue

GPU

SM 0 SM 1

K1: 0 K1: 1

K2: 1

K2: 3

K2: 1

K2: 3

K2: 0

K2: 2

K2: 0

K2: 2

GPU

SM 0 SM 1

K1: 0 K1: 1

K2: 1

K2: 3

K2: 0

K2: 2

CPU 0

Task 𝜏2

CPU 1

Task 𝜏1

CPU 0

Task 𝜏2

CPU 1

Task 𝜏1

Figure 5:GPUsched-
uling; kernel Kk’s
bth block is Kk:b.

In prior work, we documented
scheduling rules used by NVIDIA
GPUs when either all GPU work is
submitted from the same address
space or NVIDIA’s multi-process
service (MPS) is used, which we
assume [1]. For simplicity, we re-
state here only the rules needed for
our purposes. These rules govern
how kernels are enqueued on and
dequeued from a FIFO EE queue,
as depicted in Fig. 5. CUDA also
provides a concept called a CUDA
stream that adds an additional layer
of queueing in the form of stream queues prior to the EE
queue. However, as explained later, we assume streams
are used in a way that effectively obviates these additional
queues. (Our statement of Rule G2 has been simplified from
the original to reflect this assumption.) The following ter-
minology is used in the rules below. A block is assigned
when it is scheduled for execution on an SM. A kernel is
dispatched when one or more of its blocks are assigned. A
kernel is fully dispatched when its last block is assigned.

G2 A kernel is enqueued on the EE queue when launched.
G3 A kernel at the head of the EE queue is dequeued from

that queue once it becomes fully dispatched.
X1 Only blocks of the kernel at the head of the EE queue

are eligible to be assigned.



0

(Assume depicted jobs are scheduled alongside other jobs, which are not shown.) 

5 10 15 20

Job Release Job Completion GPU Execution

Time

…

τ5

2

Φ5

2

R5

2

…

Figure 6: GPU-relevant portion of the schedule in Fig. 4.

R1 A block of the kernel at the head of the EE queue is el-
igible to be assigned if its resource constraints are met.

Constrained resources include shared memory, registers,
and (of course) G-threads. We assume that an NVIDIA-
provided CUDA compiler option limiting register usage is
applied to obviate blocking for registers. We consider tech-
niques for handling shared-memory-induced blocking later.
Ex. 3. In the simple case depicted in Fig. 5, the GPU is
comprised of two SMs. Two tasks submit one kernel each,
and these are immediately enqueued on the EE queue upon
launch (Rule G2). Kernel K1 is comprised of two blocks
of 1,024 G-threads each; K2 is comprised of six blocks of
512 G-threads each. K1 is fully dispatched, so it has been
dequeued from the EE queue (Rule G3). The remaining two
blocks of K2 do not fit on either SM, and thus are not yet
assigned (Rule R1); K2 is not fully dispatched, so it is still
at the head of the EE queue. Any new kernel K3 would be
behind K2 in the EE queue, so its blocks would be ineligible
to be assigned until K2 is fully dispatched (Rule X1). ♦

4.2 System Model
One of the virtues of the DAG scheduling approach we pro-
posed in Sec. 3 is that concerns pertaining to CPU and GPU
work can be considered separately. Fig. 6 shows the subset
of Fig. 4(d) involving GPU work; using our approach, GPU
kernels are just sporadic tasks that can be analyzed indepen-
dently from CPU tasks. In deriving a response-time bound,
we therefore restrict our attention to a set τ of n independent
sporadic GPU tasks {τ1, τ2, · · · , τn}, which are scheduled
via the rules in Sec. 4.1 on a single GPU with multiple SMs.
Each task τi has a period Ti, defined as before.

With our focus on GPU-using tasks, additional notation
(to be illustrated shortly) is needed to express execution
requirements. Each job of task τi consists of Bi blocks, each
of which is executed in parallel by exactly10 Hi G-threads.
Hi is called the block size11 of τi, and Hmax = maxi{Hi}

10Blocks are executed in units of 32 G-threads called warps. Warp sched-
ulers switch between warps to hide memory latency. This can create interfer-
ence effects that must be factored into the timing analysis applied to blocks,
which we assume is done in a measurement-based way. With warp-related
interference incorporated into timing analysis, the G-threads in a block can
be treated as executing simultaneously.

11Current NVIDIA GPUs require block sizes to be multiples of 32, and
the CUDA runtime rounds up accordingly. Additionally, the maximum
possible block size is 1,024. A task’s block size is determined offline.

denotes the maximum block size in the system. We denote
by Ci the per-block worst-case execution workload of a
block of τi, where one unit of execution workload is defined
by the work completed by one G-thread in one time unit. In
summary, a GPU task τi is specified as τi = (Ci, Ti, Bi, Hi).

Note that Ci corresponds to an amount of execution work-
load instead of execution time. As each block of task τi
requires Hi threads concurrently executing in parallel, the
worst-case execution time of a block of τi is given by Ci/Hi.
Def. 1. (block length) For each task τi, its maximum block
length is defined as Li = Ci/Hi. The maximum block length
of tasks in τ is defined as Lmax = maxi{Li}.

The utilization of task τi is given by ui = Ci ·Bi/Ti, and
the total system utilization by Usum =

∑
τi∈τ ui.

Let τi,j denote the jth(j ≥ 1) job of τi. The release
time12 of job τi,j is denoted by ri,j , its (absolute) deadline
by di,j = ri,j + Ti, and its completion time by fi,j ; its
response time is defined as fi,j− ri,j . A task’s response time
is the maximum response time of any its jobs.

SM constraints. We consider a single GPU platform con-
sisting of g identical SMs, each of which consists of m
G-threads (for NVIDIA GPUs, m = 2048). A single block
of τi must execute on Hi G-threads that belong to the same
SM. That is, as long as there are fewer than Hi available
G-threads on each SM, a block of τi,j cannot commence
execution even if the total number of available G-threads
(from multiple SMs) in the GPU exceeds Hi. On the other
hand, different blocks may be assigned to different SMs for
execution even if these blocks are from the same job.

Similar to G-thread limitations, there are per-SM and per-
block limits on shared-memory usage on NVIDIA GPUs.
In experimental work involving CV workloads on NVIDIA
GPUs spanning several years, we have never observed block-
ing due to shared-memory limits on any platform for any
workload. Thus, in deriving our response-time bound in
Sec. 4.4, we assume that such blocking does not occur. Af-
ter deriving the bound, we discuss ways in which shared-
memory blocking can be addressed if it becomes an issue.
Ex. 4. Our GPU task model is illustrated in Fig. 7. There are
two SMs, and B1 = 2 and B2 = 6. The height of a rectangle
denoting a block is given byHi and its length, which denotes
its runtime duration, by Li; the area is bounded by Ci. ♦

Intra-task parallelism. We assume that intra-task paral-
lelism is allowed: consecutive jobs of the same task can
execute in parallel if both are pending and sufficient G-
threads are available. This is often the case in CV processing
pipelines where each video frame is processed independently.
Additionally, Thm. 1 below shows that severe schedulability-
related consequences exist if intra-task parallelism is for-
bidden. Practically speaking, intra-task parallelism can be
enabled by assuming per-job streams. A stream is a FIFO
queue of operations, so two kernels submitted to a single

12For the time being, we assume that jobs of GPU tasks are not early
released, but we will revisit this issue at the end of Sec. 4.4.



0 2 4 6
Time

𝐊𝟏,𝟏: 𝟎

L2

𝐊𝟏,𝟏: 𝟏

𝐊𝟐,𝟏: 𝟏

𝐊𝟐,𝟏: 𝟑

𝐊𝟐,𝟏: 𝟎

𝐊𝟐,𝟏: 𝟐

𝐊𝟐,𝟏: 𝟒

𝐊𝟐,𝟏: 𝟓

8

𝐊𝟏,𝟐: 𝟎

𝐊𝟏,𝟐: 𝟏

𝑟1,1 𝑟2,1 𝑟1,2 𝑟2,2

𝐊𝟐,𝟐: 𝟏

𝐊𝟐,𝟐: 𝟑

𝐊𝟐,𝟐: 𝟎

𝐊𝟐,𝟐: 𝟐

𝐊𝟐,𝟐: 𝟒

𝐊𝟐,𝟐: 𝟓 H2

S
M

 1
S

M
 0

H1

L1

Figure 7: A possible schedule corresponding to Fig. 5, where
m = 2048, τ1 = (3072, 5, 2, 1024), and τ2 = (512, 8, 6, 512);
rectangle Ki,j :b corresponds to the bth block of job τi,j .

stream cannot execute concurrently. Thus, the alternative of
using per-task streams would preclude intra-task parallelism.
Note that, with each job issuing one kernel at a time, any
actual stream queueing is obviated.

4.3 Total Utilization Constraint
According to the rules in Sec. 4.1, idle G-threads can exist
while the kernel at the head of the EE queue has unassigned
blocks. In particular, this can happen when the number of
idle threads on any one SM is insufficient for scheduling such
a block. Such scenarios imply that some capacity loss is fun-
damental when seeking to ensure response-time bounds for
GPUs. We express such loss by providing a total utilization
bound and proving that any system with Usum at most that
bound has bounded response times. The utilization bound
we present relies on the following definition.
Def. 2. (unit block size) The unit block size, denoted by h,
is defined by the greatest common divisor (gcd) of all tasks’
block sizes and m, i.e., h = gcd({Hi}ni=1 ∪ {m}).

The theorem below shows that capacity loss can be ex-
treme if intra-task parallelism is forbidden.

Theorem 1. With per-task streams, for any given g, m,
Hmax, and h, there exists a task system τ with Usum greater
than but arbitrarily close to h such that the response time of
some task may increase without bound in the worst case.
Proof. For any m and Hmax, m = Z · h for some integer
Z ≥ 1 and Hmax = K · h for some integer K ≥ 1, because
h is a common divisor of m and Hmax. Recall that there are
g SMs. Consider the following task system:

τi Ci Ti Bi Hi Li

τ1 h 1 1 h 1
τ2 2ε ·Hmax 1 + ε 1 Hmax 2ε
τ3 2ε · h 1 + ε g · Z −K h 2ε

For this task system, u1 = h, u2 = 2Hmax

1+ε ε, and u3 =
2h·(g·Z−K)

1+ε ε, so Usum → h+ as ε→ 0+.
Now consider the following job execution pattern, which

is illustrated in Fig. 8 for g = 2: τ1 releases its first job at
time 0, τ2 and τ3 release their first jobs at time 1 − ε, all
three tasks continue to release jobs as early as possible, and

0 1
1 + 𝜖

2 Time

SM
 1

𝝉𝟑,𝟏

𝝉𝟏,𝟏

3 + 𝜖

SM
 0

1 − 𝜖 2 + 𝜖 2 + 2𝜖 3 + 3𝜖3 + 2𝜖

𝝉𝟐,𝟏

𝝉𝟏,𝟐

𝝉𝟏,𝟑

𝝉𝟐,𝟐

𝝉𝟐,𝟑

𝝉𝟑,𝟑

𝝉𝟑,𝟐

1 + 𝜖1 + 𝜖

𝐾 9 ℎ = 𝐻=>?

ℎ

𝑍 9 ℎ = 𝑚

𝑔 9 𝑍 − 𝐾 ℎ

Figure 8: Unbounded response time using per-task streams.

every block executes for its worst-case execution workload.
Assume that, every time when τ2 and τ3 simultaneously
release a job, the job of τ2 is enqueued on the EE queue first.
Note that in Fig. 8, block boundaries for τ3 are omitted when
possible for clarity.

At time 0, τ1,1 is the only job in the EE queue and is
therefore scheduled. Then, at time 1− ε, τ2,1 and (g · Z −
K−1) blocks of τ3,1 are scheduled for the interval [1−ε, 1+
ε). As a result, all available G-threads are then occupied.
Therefore, the remaining one block of τ3,1 must wait until
time 1 when τ1,1 finishes. Note that, with per-task streams, a
job cannot enter the EE queue until the prior job of the same
task completes. τ1,2 enters the EE queue at time 1 after τ3,1,
which entered at time 1 − ε. Thus, τ1,2 must wait to begin
execution until after the last block of τ3,1 is assigned and
once sufficient G-threads become available at time 1 + ε.

This pattern repeats, with task τ1 releasing a job every
time unit but finishing a job every 1 + ε time units. Thus, its
response time increases without bound.

For example, on the test platform considered in Sec. 5,
g = 80, m = 2048, and h can be as small as 32. Thus, close
to 99.98% of the hardware capacity may be wasted!

In contrast, as we show in Sec. 4.4, if intra-task paral-
lelism is allowed, then any task set with Usum ≤ g · (m−
Hmax + h) has bounded response times. Furthermore, the
following theorem shows that this utilization bound is tight
(under our analysis assumptions).

Theorem 2. With per-job streams, for any given g, m,
Hmax, and h, there exists a task system τ with Usum greater
than but arbitrarily close to g · (m −Hmax + h) such that
the response time of some task may increase without bound
in the worst case.

Proof. For any m and Hmax, integers P and Q exist such
that m = P ·Hmax +Q, where P ≥ 1 and 0 ≤ Q < Hmax.
Furthermore, by the definition of h, Hmax = K · h for some
integerK ≥ 1, andm = Z ·h for some integer Z ≥ 1. Thus,
m = P ·Hmax +Q = P ·K · h+Q = Z · h. Consider the
following task set (if Q = 0, then τ2 need not exist):

τi Ci Ti Bi Hi Li

τ1 ε ·Hmax 1 g · P Hmax ε
τ2 ε ·Q 1 g Q ε
τ3 h 1 g · (Z −K + 1) h 1



𝝉𝟑,𝟐
𝝉𝟑,𝟐

𝝉𝟑,𝟐
𝝉𝟑,𝟐

𝝉𝟑,𝟏
𝝉𝟑,𝟏

𝝉𝟑,𝟏
𝝉𝟑,𝟏

0 2 + 2𝜖
Time

SM
 1

𝝉𝟏,𝟏
𝝉𝟑,𝟏

SM
 0

1 + 𝜖 1 + 2𝜖

𝝉𝟐,𝟏

ℎ

𝜖

𝝉𝟏,𝟏

𝝉𝟑,𝟏

𝝉𝟑,𝟏

𝝉𝟑,𝟐
𝝉𝟑,𝟐
𝝉𝟑,𝟐
𝝉𝟑,𝟐

1 + 𝜖1 + 𝜖

𝑍 9 ℎ

𝝉𝟑,𝟏
𝝉𝟑,𝟏
𝝉𝟑,𝟏
𝝉𝟑,𝟏

𝝉𝟑,𝟐
𝝉𝟑,𝟐
𝝉𝟑,𝟐
𝝉𝟑,𝟐

𝑄

𝐻=>? =
			𝐾 9 ℎ

𝑃 9 𝐻=>?

𝐻=>? − ℎ

𝝉𝟑,𝟏

𝝉𝟏,𝟏

𝝉𝟐,𝟏

𝝉𝟏,𝟏

𝝉𝟏,𝟐

𝝉𝟐,𝟐

𝝉𝟏,𝟐

𝝉𝟏,𝟐

𝝉𝟐,𝟐

𝝉𝟏,𝟐

𝝉𝟑,𝟐𝝉𝟑,𝟏

𝝉𝟑,𝟐𝝉𝟑,𝟏

Figure 9: Unbounded response time using per-job streams.

For this task system, u1 = (Hmax · g · P )ε, u2 = (Q · g)ε,
and u3 = h · g · (Z −K + 1) = g · (m −Hmax + h), so
Usum → g · (m−Hmax + h)+ as ε→ 0+.

Now consider the following job execution pattern, which
is illustrated in Fig. 9 for g = 2: all three tasks release jobs
as soon as possible, i.e., at time instants 0, 1, 2, . . . , the EE
enqueue order is always τ1, τ2, and then τ3, and every block
executes for its worst-case execution workload.

At time 0, the g·P blocks of τ1 are scheduled first, leaving
Q available G-threads in each SM. Next, the g blocks of τ2
are scheduled using the remaining Q G-threads on each SM.
Thus, all G-threads are fully occupied in the time interval
[0, ε). As we often see in experiments, the g · (Z −K + 1)
blocks of τ3 are distributed to the g SMs evenly, and are
scheduled for the time interval [ε, 1 + ε). Note that, although
we currently do not have sufficient evidence to guarantee this
even distribution, it at least represents a potential worst case.

Notice that there are onlym−(Z−K+1)·h = (Hmax−
h) G-threads available on each of the g SMs during the
interval [ε, 1 + ε). Therefore, none of the blocks of τ1,2,
which has a block size of Hmax, will be scheduled before
time 1 + ε. As a result, no blocks of τ2,2 or τ3,2 will be
scheduled before time 1+ε either, because they are enqueued
after τ1,2 on the FIFO EE queue.

This pattern repeats, with each of the three tasks releasing
a job every time unit but finishing a job every 1 + ε time
units, so the response time of each task increases without
bound.

4.4 Response-Time Bound
In this section, we derive a response-time bound assuming
per-job streams are used (i.e., intra-task parallelism is al-
lowed) and the following holds.

Usum ≤ g · (m−Hmax + h) (1)

Our derivation is based on the following key definition.
Def. 3. (busy and non-busy) A time instant is called busy
if and only if at most (Hmax − h) G-threads are idle in each

of the g SMs; a time instant is called non-busy if and only
if at least Hmax G-threads are idle in some of the g SMs. A
time interval is called busy if and only if every time instant
in that interval is busy.

By Def. 2, h is the minimum amount by which the number
of idle G-threads can change, so “more than (Hmax−h) G-
threads are idle” is equivalent to “at least Hmax G-threads
are idle.” Thus, busy and non-busy time instants are well-
defined, i.e., a time instant is either busy or non-busy.

To derive response-time bounds for all tasks in the system,
we bound the response time of an arbitrary job τk,j . The
following two lemmas bound the unfinished workload at
certain time instants. In the first lemma, t0 denotes the latest
non-busy time instant at or before τk,j’s release time rk,j ,
i.e., t0 = rk,j or (t0, rk,j ] is a busy interval.

Lemma 1. At time t0, the total unfinished workload from
jobs released at or before t0, denoted by W (t0), satisfies
W (t0) ≤ Lmax · (g ·m−Hmax).

Proof. Suppose there are b blocks, β1, β2, . . . , βb, that have
been released but are unfinished at time t0. For each block
βi, let H(βi) denote its block size and let C(βi) denote its
worst-case execution workload. By definition, t0 is a non-
busy time instant, so by Def. 3, at least Hmax G-threads are
idle in some SM at time t0. Because this SM has enough
available G-threads to schedule any of the b blocks, they all
must be scheduled at time t0. These facts imply

b∑
i=1

H(βi) ≤ g ·m−Hmax. (2)

Therefore, W (to) =

b∑
i=1

C(βi)

= {by the definition of Li in Def.1}
b∑
i=1

(L(βi) ·H(βi))

≤ {by the definition of Lmax in Def.1}
b∑
i=1

(Lmax ·H(βi))

= {rearranging}

Lmax ·
b∑
i=1

H(βi)

≤ {by (2)}
Lmax · (g ·m−Hmax).

The lemma follows.

Lemma 2. At time rk,j , the total unfinished workload from
jobs released at or before rk,l, denoted by W (rk,j), satisfies
W (rk,j) < Lmax · (g ·m−Hmax) +

∑n
i=1(Bi · Ci).



Proof. Let new(t0, rk,j) denote the workload released during
the time interval (t0, rk,j ], and let done(t0, rk,j) denote the
workload completed during the time interval (t0, rk,j ]. Then,

W (rk,j) = W (t0) + new(t0, rk,j)− done(t0, rk,j). (3)

As each task τi releases consecutive jobs with a minimum
separation of Ti, new(t0, rk,j) can be upper bounded by

new(t0, rk,j) ≤
n∑
i=1

(⌈
rk,j − t0

Ti

⌉
·Bi · Ci

)
< {because dae < a+ 1}

n∑
i=1

((
rk,j − t0

Ti
+ 1

)
·Bi · Ci

)
= {rearranging}

(rk,j − t0)

n∑
i=1

Bi · Ci
Ti

+

n∑
i=1

(Bi · Ci)

= {by the definitions of ui and Usum}

(rk,j − t0)Usum +

n∑
i=1

(Bi · Ci). (4)

By Def. 3, (t0, rk,j ] being a busy time interval implies that
at most (Hmax − h) G-threads in each of the g SMs are
idle at any time instant in this time interval. That is, at least
g · (m−Hmax + h) G-threads are occupied executing work
at any time instant in (t0, rk,j ]. Therefore,

done(t0, rk,j) ≥ (rk,j − t0) · g · (m−Hmax + h). (5)

By (3), (4), and (5),

W (rk,j) <W (t0) + (rk,j − t0)Usum +

n∑
i=1

(Bi · Ci)

− (rk,j − t0) · g · (m−Hmax + h)

= {rearranging}
(rk,j − t0) · (Usum − g · (m−Hmax + h))

+W (t0) +

n∑
i=1

(Bi · Ci)

≤ {by (1) and t0 ≤ rk,j}

W (t0) +

n∑
i=1

(Bi · Ci)

≤ {by Lemma 1}

Lmax · (g ·m−Hmax) +

n∑
i=1

(Bi · Ci).

The lemma follows.

The following theorem provides our response-time bound.

Theorem 3. τk,j finishes the execution of all of its blocks
by time rk,j +Rk, where

Rk =
Lmax · (g ·m−Hmax) +

∑n
i=1(Bi ·Ci)− Ck

g ·(m−Hmax + h)
+Lk.

(6)
Proof. Since the EE queue is FIFO, we omit all jobs released
after rk,j in the analysis. Thus, any workload executed at or
after rk,j is from W (rk,j). We also assume each block of
τk,j executes for its worst-case workload Ck (if any of its
blocks executes for less, τk,j’s completion is not delayed).13

Let β∗ denote the last-finished block of τk,j . Then, the
workload from other blocks or jobs at rk,j is W (rk,j)− Ck.
Let t∗ denote the time instant at which β∗ starts execution.
Then, [rk,j , t

∗) is a busy interval (else β∗ would have exe-
cuted before time t∗). Let done(rk,j , t∗) denote the workload
completed during the time interval [rk,j , t

∗). Then, by Def. 3,

done(rk,j , t
∗) ≥ (t∗ − rk,j) · g · (m−Hmax + h). (7)

The workload Ck from β∗ executes beyond time t∗, so
done(rk,j , t

∗) ≤ W (rk,j) − Ck. By (7), this implies t∗ ≤
rk,j +

W (rk,j)−Ck

g·(m−Hmax+h)
. At time t∗, β∗ executes continu-

ously for Lk time units. Thus, β∗ finishes by time rk,j +
W (rk,j)−Ck

g·(m−Hmax+h)
+Lk. By Lemma 2, the theorem follows.

Discussion. As noted in Sec. 4.2, the absence of shared-
memory-induced blocking is assumed in the above analysis.
This limitation could be eased by introducing blocking terms,
but we leave this for future work. Alternatively, through of-
fline profiling, one could restrict the per-SM G-thread count
of m to some value m′ such that, if only m′ G-threads are
used per SM, no shared-memory-induced blocking ever oc-
curs. The analysis above could then be applied with m re-
placed by m′. While one might expect this analysis to be
sustainable in the sense that m per-SM G-threads could re-
ally be used at runtime, we found a counterexample where
increasing m′ to m causes response times to increase. Thus,
the restricted G-thread count ofm′ would actually have to be
enforced. This could potentially be done by creating a never-
ending kernel per SM that monopolizes m−m′ G-threads.

Early releasing (see Secs. 2 and 3) must be restricted for
GPU tasks. Because the FIFO EE queue effectively priori-
tizes work by actual enqueueing times, uncontrolled early
releasing can change priorities. Also, this can lead to a vio-
lation of the sporadic task model if consecutive jobs of the
same task τi have enqueueing times less than Ti time units
apart. Thus, the early releasing of GPU tasks must be guarded
to ensure that this minimum separation is maintained.

5 Case Study
In this section, we detail the case-study experiments we
performed, and compare our fine-grained DAG scheduling
approach to monolithic and coarse-grained DAG scheduling.

13Other jobs’ blocks may or may not execute for their worst case.



Classify 

Pedestrians
vxHOGFeaturesNodevxHOGCellsNode

Collect 

Pedestrian 

Locations

Compute 

Scale Levels

Convert 

Color to 

Grayscale

(a)

(b)

Normalize

Orientation

Histograms

Classify 

Pedestrians

Compute 

Orientation 

Histograms

Compute 

Gradients

Resize 

Image

Normalize

Orientation

Histograms

Classify 

Pedestrians

Compute 

Orientation 

Histograms

Compute 

Gradients

Resize 

Image

Normalize

Orientation

Histograms

Classify 

Pedestrians

Compute 

Orientation 

Histograms

Compute 

Gradients

Resize 

Image

Normalize

Orientation

Histograms

Classify 

Pedestrians

Compute 

Orientation 

Histograms

Compute 

Gradients

Resize 

Image

Normalize

Orientation

Histograms

Classify 

Pedestrians

Compute 

Orientation 

Histograms

Compute 

Gradients

Resize 

Image

Normalize

Orientation

Histograms

Classify 

Pedestrians

Compute 

Orientation 

Histograms

Compute 

Gradients

Resize 

Image

Normalize

Orientation

Histograms

Classify 

Pedestrians

Compute 

Orientation 

Histograms

Compute 

Gradients

Resize 

Image

Normalize

Orientation

Histograms

Classify 

Pedestrians

Compute 

Orientation 

Histograms

Compute 

Gradients

Resize 

Image

Convert 

Color to 

Grayscale

vxHOGFeaturesNode
Classify 

Pedestrians

Collect 

Pedestrian 

Locations

Compute 

Scale Levels
vxHOGCellsNodevxHOGCellsNode vxHOGFeaturesNode

Classify

Pedestrians

GPU ExecutionGPU ExecutionCPU ExecutionCPU Execution CPU+GPU Execution GPU ExecutionCPU Execution CPU+GPU Execution

Figure 10: (a) Monolithic/coarse-grained and (b) fine-grained HOG DAGs. Our experiments used 13 scale levels; three are shown here.
In (b), there are also two CPU nodes per kernel that launch that kernel and await its results. These nodes have short execution times and are
omitted from much of our discussion for simplicity. However, they were fully considered in our evaluation.

5.1 Experimental Evaluation
All of our case-study experiments focused on the Histogram
of Oriented Gradients (HOG) algorithm, a well-known CV
technique for recognizing pedestrians in input images [19].

Why HOG? The HOG algorithm is required by the OpenVX
1.2 specification,14 ensuring its relevance in real-world graph-
based CV. HOG is inherently a multi-stage technique: it cal-
culates a directional gradient for each pixel, sorts gradients
into histograms, normalizes lighting and contrast, and then
performs classification. These computations are performed
at multiple image-scale levels, using successively smaller
versions of the original image. These steps require both CPU
and GPU computations, meaning that HOG fits naturally
into a DAG-based model.

HOG implementation and DAG variations. At the time
of writing, no open-source implementations of version 1.2
of OpenVX exist, so we based our case-study experiments
on the HOG implementation available in the open-source
CV library OpenCV.15 OpenCV provides CV functions, but
does not structure computations as DAGs. To create DAGs,
we split the OpenCV HOG code into separate functions, and
designated each function as a DAG node. We compared the
response times of successively finer-grained notions of DAG
scheduling, corresponding to monolithic, coarse-grained, and
fine-grained HOG DAGs.16

The monolithic version of HOG corresponds to the type
of DAG that one might specify using OpenVX, and consists
of a single DAG of six types of nodes (three are replicated per
scale level), as shown in Fig. 10(a). Implementing this DAG
required the fewest changes to OpenCV code, as monolithic
execution requires only a single thread to sequentially exe-
cute the six nodes’ functions. Coarse-grained HOG uses the
same DAG as monolithic HOG, but, as discussed in Sec. 2,
each of the six nodes is a schedulable entity, with scheduling
via G-EDF with early releasing. We also used G-EDF, but
without early releasing, as a monolithic DAG scheduler.

14https://www.khronos.org/registry/OpenVX/specs/
1.2/OpenVX_Specification_1_2.pdf, Sec. 3.53.1.

15https://docs.opencv.org/3.4.1/d5/d33/structcv_
1_1HOGDescriptor.html.

16Our source code is available online at https://github.com/
Yougmark/opencv/tree/rtss18.

In fine-grained HOG, several of the coarse-grained nodes
are refined, as shown in Fig. 10(b). This DAG reflects our
new fine-grained approach, where nodes are treated as tasks
and the techniques (early releasing, intra-task parallelism,
and G-FL scheduling) in Sec. 3 are applied.

Fine-grained DAG implementation. Implementing fine-
grained HOG introduced a series of challenges. For example,
intra-task parallelism required multiple instances of each
DAG to ensure each node can have multiple jobs executing in
parallel. Other challenges included priority points that varied
(for launching GPU kernels and awaiting results), handling
inter-process communication (IPC) between CPU and GPU
nodes, enforcing guards on early releasing for GPU nodes,
and computing task offsets from response-time bounds in
order to run the experiments.

As in prior work [23], we used PGMRT [21] to handle
IPC in the coarse- and fine-grained HOG variants. PGMRT

introduces producer/consumer buffers and mechanisms that
enable producer nodes to write output data and consumer
nodes to suspend until data is available on all inbound edges.

Test platform. Our evaluation platform was selected to over-
approximate current NVIDIA embedded offerings for au-
tomotive systems, such as the Drive PX2. This platform
features a single NVIDIA Titan V GPU, two eight-core Intel
CPUs, and 32 GB of DRAM. Each core features a 32-KB
L1 data cache, a 32-KB L1 instruction cache, and a 1-MB
L2 cache, and all eight cores on a socket share an 11-MB L3
cache. The system was configured to run Ubuntu 16.04 as
an OS, using version 2017.1 of the LITMUSRT kernel [39],
with hardware multi-threading disabled.

Overall computational workload. One would expect con-
tention for hardware resources in many real-world use cases,
such as an autonomous vehicle that processes data from
multiple camera feeds. We approximated a “contentious”
workload by executing six HOG processes on our hardware
platform—the limit based on our platform’s DRAM, CPU,
and GPU capacity. This number of HOG processes makes en-
suring bounded response times difficult without careful con-
sideration of resource allocation. This scenario also reflects
the very real possibility of executing at high platform uti-
lization, as is commonly done in the automotive industry. To



Monolithic Monolithic Coarse-Grained Coarse-Grained Fine-Grained Fine-Grained
G-EDF C-EDF G-EDF C-EDF G-FL C-FL

Analytical Bound (ms) N/A N/A N/A N/A 542.39 477.25
Observed Maximum Response Time (ms) 170091.06 243745.21 427.07 428.50 125.66 131.43
Observed Average Response Time (ms) 84669.47 121748.05 136.57 121.52 65.99 66.06

Table 1: Analytical and observed response times. A bound of N/A indicates unschedulability, so no bound could be computed.

ensure consistency with the GPU scheduling rules in Sec. 4.1,
we conducted all of our experiments using NVIDIA’s MPS.

Video-frame-processing can potentially experience cache-
affinity-loss issues under global scheduling. We therefore
considered two variants of both G-EDF and G-FL: a truly
global variant where any of the six DAGs can be scheduled
on any of our platform’s 16 CPUs, and a “clustered” variant
where the six DAGs are partitioned between the machine’s
two sockets, with scheduling being “global” only within a
socket. We refer to the latter variants as C-EDF and C-FL,
respectively, where the “C” prefix stands for “clustered.”

5.2 Results
Our experiments were designed to examine analytical
response-time bounds and observed response times under the
considered scheduling approaches. We also sought to exam-
ine the overhead required to support fine-grained scheduling.

Analytical bounds. To compute analytical response-time
bounds, we first computed CPU WCETs and worst-case
GPU workloads via a measurement process. All worst-case
values were calculated as the 99th percentile of 30,000 sam-
ples obtained with all six DAGs executing together to cause
contention. For each GPU task τi, we used NVIDIA’s profil-
ing tool nvprof to measure Bi and Hi, and instrumented
the CUDA kernels to measure Li on the GPU using the
globaltimer performance-counter register. For HOG,
Hmax = 256 and h = 64. We measured CPU WCETs
using Feather-Trace [14]. For all DAGs, Ti = 33ms.

We computed fine-grained response-time bounds by us-
ing Thm. 3 in Sec. 4.4 for GPU nodes and Thm. 2 from
[53] for CPU nodes and by then applying the techniques in
Sec. 3 to obtain an overall end-to-end bound. We tried com-
puting analytical bounds for the coarse-grained (resp., mono-
lithic) C-EDF and G-EDF variants using prior work [51]
(resp., [20]), but found these variants to be unschedulable.17

These results are summarized in the first row of Tbl. 1.
Obs. 1. With respect to schedulablity, the monolithic and
coarse-grained variants could not even come close to sup-
porting all six cameras (i.e., DAGs).

With respect to schedulability, the monolithic variants
could not even support one camera, because the overall exe-
cution time of a single monolithic DAG far exceeds its period.
The coarse-grained variants were only slightly better, being
able to support just one camera (in which case the choice
of variant, C-EDF vs. G-EDF, is of little relevance). In this

17In the original coarse-grained work [23, 51], locking protocols were
used to preclude concurrent GPU accesses. We instead allowed concurrent
accesses and used the analysis in Sec. 4, but the coarse-grained variants
were still unschedulable.

0 100 200 300 400 500
Time (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
ta

g
e
 (

X
 <

=
 x

)

[5,6]

[1]
[2]

[3]

[4]

[1] Fine-grained (C-FL)
[2] Fine-grained (G-FL)
[3] Coarse-grained (C-EDF)
[4] Coarse-grained (G-EDF)
[5] Monolithic (C-EDF)
[6] Monolithic (G-EDF)

Figure 11: CDFs of response times for varying DAG granularity.

case, adding a second HOG DAG increased GPU responses
to the point of causing a CPU utilization-constraint violation.
Note that the increase in CPU utilization is due to using
suspension-oblivious analysis.
Obs. 2. With respect to schedulability, both fine-grained
variants were able to support all six cameras.

The better schedulability of the fine-grained variants
largely resulted from scheduling shorter tasks with intra-task
parallelism, though switching to a fair-lateness-based sched-
uler also proved beneficial. In particular, we found that the
scheduler change reduced node response times by 0.1–9.9%.
While this reduction is modest, it is still useful. Nonethe-
less, these reductions suggest that most of the schedulability
improvements stemmed from increasing parallelism.

Observed response times. Fig. 11 plots DAG response-time
distributions, which we computed for all tested variants from
measurement data. Corresponding worst- and average-case
times are also reported in Tbl. 1.
Obs. 3. The average (resp., worst-case) observed response
time under the fine-grained variants was around 66 ms (resp.,
130 ms), which is substantially lower than the non-fine-
grained variants. (For reference, the response time of an
alert driver is reported to be around 700 ms [27].)

This observation is supported by Fig. 11 and Tbl. 1. Note
that the difference between clustered and global scheduling
was not substantial. This is because the aggregate memory
footprint of all frames concurrently being accessed under
both variants tended to far exceed the size of the L3 cache.
Obs. 4. The analytical fine-grained response-time bounds
upper bounded the observed worst-case times.

This observation is supported by Fig. 11 and Tbl. 1. While
the listed bounds of 477.25 ms and 542.39 ms in Tbl. 1 may
seem high, note that they are based on considering worst-
case scenarios that may be unlikely to occur in practice (and
they are still within the limit mentioned in [27]). Moreover,



the monolithic and coarse-grained variants were unable to
guarantee any bounds when scheduling all six DAGs.
Obs. 5. Observed response times exhibited lower variation
under fine-grained scheduling.

This observation is supported by Fig. 11. The fine-grained
variances in this plot are several orders of magnitude less
than the variances for the other variants.
Obs. 6. Early releasing improved observed response times.

To verify this observation, we conducted additional ex-
periments in which we disabled early releasing for the fine-
grained G-FL variant. In these experiments, we found that
early releasing reduced observed response times by 49%.

Overhead of DAG conversion. We estimated the overhead
of converting from a coarse-grained DAG to a fine-grained
one by comparing the computed WCET of every coarse-
grained node with the sum of the computed WCETs of the
fine-grained nodes that replace it. The total percentage in-
crease across all nodes was deemed to be overhead.
Obs. 7. The additional overhead introduced to support fine-
grained scheduling had modest impact.

From our collected data, the total overhead was 14.15%.

6 Related Work
This paper and the prior work it builds upon [23, 51] focus
specifically on supporting GPU-using real-time CV work-
loads. The only other work on this topic known to us is
a recent paper by Zhou et al. [56] that proposes a tech-
nique based on reordering and batching (see Sec. 3) ker-
nels to speed deep neural networks. However, they provided
no schedulability analysis. More broadly, a large body of
work of a general nature exists pertaining to GPU-enabled
real-time systems. Much of this work focuses on either
treating GPUs as non-shared devices to enable highly pre-
dictable GPU usage [22, 32, 33, 46, 47, 48, 50] or seeking
to improve schedulability by simulating preemptive execu-
tion [7, 32, 34, 57]. Other work has focused on timing anal-
ysis for GPU workloads [8, 9, 10, 11, 12], techniques for
remedying performance bottlenecks [28], direct I/O commu-
nication [3], energy management [45], and techniques for
managing or evaluating GPU hardware resources, notably
cache and DRAM [16, 17, 26, 29, 35, 40, 49].

The scheduling rules discussed in Sec. 4.1 resulted from
an effort by our group to develop a model of GPU execu-
tion, particularly for NVIDIA GPUs. This effort has delved
into a number of aspects of NVIDIA GPUs marketed for
embedded systems [1, 41, 54]. Much of this work is rooted
in the observation that GPU sharing will become essential
for effectively utilizing less-capable embedded GPUs. GPU
sharing has also been explored by others in the context of
throughput-oriented systems [55].

There has been much prior work on scheduling real-time
DAG-based multiprocessor task systems; representative pa-
pers include [4, 5, 6, 13, 30, 31, 36, 37, 38, 44]. However, this

work is largely directed at verifying hard-real-time schedu-
lability instead of merely deriving response-time bounds.

7 Conclusions
In this paper, we proposed a fine-grained approach for de-
composing and scheduling acyclic OpenVX graphs. We also
explained how to leverage prior work to compute end-to-
end response-time bounds for these graphs. For GPU-using
workloads, end-to-end bounds require response-time bounds
for GPU tasks. We presented the first ever such bounds for
NVIDIA GPUs, and showed that these bounds are tight un-
der certain assumptions. To illustrate the efficacy of our
proposed fine-grained approach, we presented an experimen-
tal case study. We saw in this study that our fine-grained
approach enabled response-time bounds to be guaranteed
and observed response times to be reduced. A notable as-
pect of our fine-grained approach is its crucial reliance on
allowing intra-task parallelism, a feature forbidden in most
conventional real-time task models.

This paper opens up many avenues for future work. First,
methods for dealing with cycles in OpenVX graphs explored
previously [23, 51] need to be incorporated into our fine-
grained approach. Second, although shared-memory-induced
GPU blocking is exceedingly rare in our experience, our
GPU response-time analysis needs to be extended to fully
deal with its effects. Third, tools that automate the resource-
allocation options considered in our case study would be use-
ful. Fourth, it would be desirable to augment our case study
with a schedulability study that examines general trends.
Finally, while we have made a case herein for introducing
real-time concepts and fine-grained scheduling into OpenVX,
an actual OpenVX implementation that incorporates these
elements has yet to be produced.

References
[1] T. Amert, N. Otterness, M. Yang, J. Anderson, and F. D.

Smith, “GPU scheduling on the NVIDIA TX2: Hidden
details revealed,” in RTSS ’17.

[2] J. Anderson and A. Srinivasan, “Early-release fair
scheduling,” in ECRTS ’00.

[3] J. Aumiller, S. Brandt, S. Kato, and N. Rath, “Sup-
porting low-latency CPS using GPUs and direct I/O
schemes,” in RTCSA ’12.

[4] S. Baruah, “Federated scheduling of sporadic DAG task
systems,” in IPDPS ’15.

[5] ——, “Improved multiprocessor global schedulability
analysis of sporadic DAG task systems,” in ECRTS ’14.

[6] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela,
L. Stougie, and A. Wiese, “A generalized parallel task
model for recurrent real-time processes,” in RTSS ’12.

[7] C. Basaran and K. Kang, “Supporting preemptive task
executions and memory copies in GPGPUs,” in ECRTS

’12.



[8] K. Berezovskyi, K. Bletsas, and B. Andersson,
“Makespan computation for GPU threads running on a
single streaming multiprocessor,” in ECRTS ’12.

[9] K. Berezovskyi, K. Bletsas, and S. Petters, “Faster
makespan estimation for GPU threads on a single
streaming multiprocessor,” in ETFA ’13.

[10] K. Berezovskyi, F. Guet, L. Santinelli, K. Bletsas, and
E. Tovar, “Measurement-based probabilistic timing
analysis for graphics processor units,” in ARCS ’16.

[11] K. Berezovskyi, L. Santinelli, K. Bletsas, and E. Tovar,
“WCET measurement-based and extreme value theory
characterisation of CUDA kernels,” in RTNS ’14.

[12] A. Betts and A. Donaldson, “Estimating the WCET of
GPU-accelerated applications using hybrid analysis,”
in ECRTS ’13.

[13] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and
A. Wiese, “Feasibility analysis in the sporadic DAG
task model,” in ECRTS ’13.

[14] B. Brandenburg and J. Anderson, “Feather-trace: A
lightweight event tracing toolkit,” in OSPERT ’07.

[15] ——, “Optimality results for multiprocessor real-time
locking,” in RTSS ’10.

[16] N. Capodieci, R. Cavicchioli, P. Valente, and
M. Bertogna, “SiGAMMA: Server based integrated
GPU arbitration mechanism for memory accesses,” in
RTNS ’17.

[17] R. Cavicchioli, N. Capodieci, and M. Bertogna, “Mem-
ory interference characterization between CPU cores
and integrated GPUs in mixed-criticality platforms,” in
RTNS ’17.

[18] K. Chitnis, J. Villareal, R. Giduthuri, T. Schwartz,
F. Brill, and T. Lepley, “OpenVX graph pipelining
extension,” Online at https://www.khronos.org/registry/
OpenVX/extensions/vx khr pipelining/html/index.
html, 2018.

[19] N. Dalal and B. Triggs, “Histograms of oriented gradi-
ents for human detection,” in CVPR ’05.

[20] U. Devi and J. Anderson, “Tardiness bounds under
global EDF scheduling on a multiprocessor,” Real-Time
Systems, vol. 38, no. 2, pp. 133–189, 2008.

[21] G. Elliott, N. Kim, J. Erickson, C. Liu, and J. Anderson,
“Minimizing response times of automotive dataflows
on multicore,” in RTCSA ’14.

[22] G. Elliott, B. Ward, and J. Anderson, “GPUSync: A
framework for real-time GPU management,” in RTSS

’13.
[23] G. Elliott, K. Yang, and J. Anderson, “Supporting real-

time computer vision workloads using OpenVX on
multicore+GPU platforms,” in RTSS ’15.

[24] J. Erickson and J. Anderson, “Response time bounds
for G-EDF without intra-task precedence constraints,”
in OPODIS ’11.

[25] J. Erickson, B. Ward, and J. Anderson, “Fair lateness
scheduling: Reducing maximum lateness in G-EDF-
like scheduling,” Real-Time Systems, vol. 50, no. 1, pp.
5–47, 2014.

[26] B. Forsberg, A. Marongiu, and L. Benini, “GPUGuard:
Towards supporting a predictable execution model for
heterogeneous SoC,” in DATE ’17.

[27] M. Green, ““How long does it take to stop?” Method-
ological analysis of driver perception-brake times,”
Transportation Human Factors, vol. 2, no. 3, 2000.

[28] A. Horga, S. Chattopadhyay, P. Elesa, and Z. Peng,
“Systematic detection of memory related performance
bottlenecks in GPGPU programs,” Journal of Systems
Architecture, vol. 71, pp. 73–87, 2016.

[29] P. Houdek, M. Sojka, and Z. Hanzálek, “Towards pre-
dictable execution model on ARM-based heteroge-
neous platforms,” in ISIE ’17.

[30] X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-
federated scheduling of parallel real-time tasks on mul-
tiprocessors,” in RTSS ’17.

[31] X. Jiang, X. Long, N. Guan, and H. Wan, “On the
decomposition-based global edf scheduling of parallel
real-time tasks,” in RTSS ’16.

[32] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar,
Y. Ishikawa, and R. Rajkumar, “RGEM: A responsive
GPGPU execution model for runtime engines,” in RTSS

’11.
[33] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa,

“TimeGraph: GPU scheduling for real-time multi-
tasking environments,” in USENIX ATC ’11.

[34] H. Lee and M. Faruque, “Run-time scheduling frame-
work for event-driven applications on a GPU-based
embedded system,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
vol. 35, no. 12, pp. 1956–1967, 2016.

[35] A. Li, G. van den Braak, A. Kumar, and H. Corporaal,
“Adaptive and transparent cache bypassing for GPUs,”
in SIGHPC ’15.

[36] J. Li, K. Agrawal, C. Lu, and C. Gill, “Analysis of
global EDF for parallel tasks,” in ECRTS ’13.

[37] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu,
“Mixed-criticality federated scheduling for parallel real-
time tasks,” Real-Time Systems, vol. 53, no. 5, pp. 760–
811, 2017.

[38] J. Li, A. Saifullah, K. Agrawal, C. Gill, and C. Lu,
“Analysis of federated and global scheduling for parallel
real-time tasks,” in ECRTS ’14.

[39] LITMUSRT Project, http://www.litmus-rt.org/.
[40] X. Mei and X. Chu, “Dissecting GPU memory hierar-

chy through microbenchmarking,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 1, pp.
72–86, 2016.



[41] N. Otterness, M. Yang, S. Rust, E. Park, J. Anderson,
F. Smith, A. Berg, and S. Wang, “An evaluation of the
NVIDIA TX1 for supporting real-time computer-vision
workloads,” in RTAS ’17.

[42] The Khronos Group, “OpenVX: Portable, Power Ef-
ficient Vision Processing,” Online at https://www.
khronos.org/openvx/.

[43] ——, “The OpenVX Graph Pipelining,
Streaming, and Batch Processing Extension
to OpenVX 1.1 and 1.2,” Online at https:
//www.khronos.org/registry/OpenVX/extensions/
vx khr pipelining/OpenVX Graph Pipelining
Streaming and Batch Processing Extension 1 0.pdf.

[44] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-
core real-time scheduling for generalized parallel task
models,” in RTSS ’11.

[45] M. Santriaji and H. Hoffmann, “MERLOT: Architec-
tural support for energy-efficient real-time processing
in GPUs,” in RTAS ’18.

[46] U. Verner, A. Mendelson, and A. Schuster, “Batch
method for efficient resource sharing in real-time multi-
GPU systems,” in ICDCN ’14.

[47] ——, “Scheduling periodic real-time communication
in multi-GPU systems,” in ICCCN ’14.

[48] ——, “Scheduling processing of real-time data streams
on heterogeneous multi-GPU systems,” in SYSTOR ’12.

[49] H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying GPU microarchitecture
through microbenchmarking,” in ISPASS ’10.

[50] Y. Xu, R. Wang, T. Li, M. Song, L. Gao, Z. Luan,
and D. Qian, “Scheduling tasks with mixed timing
constraints in GPU-powered real-time systems,” in ICS

’16.
[51] K. Yang, G. Elliott, and J. Anderson, “Analysis for

supporting real-time computer vision workloads using
OpenVX on multicore+GPU platforms,” in RTNS ’15.

[52] K. Yang, M. Yang, and J. Anderson, “Reducing
response-time bounds for DAG-based task systems on
heterogeneous multicore platforms,” in RTNS ’16.

[53] K. Yang and J. Anderson, “Optimal GEDF-based sched-
ulers that allow intra-task parallelism on heterogeneous
multiprocessors,” in ESTIMedia ’14.

[54] M. Yang, N. Otterness, T. Amert, J. Bakita, J. Anderson,
and F. D. Smith, “Avoiding pitfalls when using NVIDIA
GPUs for real-time tasks in autonomous systems,” in
ECRTS ’18.

[55] J. Zhong and B. He, “Kernelet: High-throughput GPU
kernel executions with dynamic slicing and scheduling,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 25, pp. 1522–1532, 2014.

[56] H. Zhou, S. Bateni, and C. Liu, “S3DNN: Supervised
streaming and scheduling for GPU-accelerated real-
time DNN workloads,” in RTAS ’18.

[57] H. Zhou, G. Tong, and C. Liu, “GPES: A preemptive
execution system for GPGPU computing,” in RTAS ’15.


