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AXI-ICRT: Towards a Real-Time
AXI-Interconnect for Highly Integrated SoCs

Zhe Jiang, Kecheng Yang, Nathan Fisher, Ian Gray, Neil Audsley, Zheng Dong§

Abstract—In modern real-time heterogeneous System-on-Chips (SoCs), ensuring the predictability of interconnects is becoming
increasingly important. Most of the existing interconnects are mainly designed to achieve high throughput, with their
micro-architectures usually based on FIFO queues. The FIFO-based design prevents transaction prioritization based on importance
and leads to occurrences of physical priority inversion. Such problems lead to difficulties in ensuring transaction predictability,
especially when the system scales to a large number of elements. In this paper, we introduce AXI-InterconnectRT (AXI-ICRT , for short)
– a real-time AXI interconnect for heterogeneous SoCs, which redefines the micro-architecture of interconnects by enabling random
accesses of buffered transactions and organizing transactions through compositional scheduling. This hardware-software co-design
approach provides predictable and scalable real-time performance for highly integrated SoCs.

Index Terms—Real-time Systems, Many-core Systems, Interconnect, Schedulability, Scalability.

✦

1 INTRODUCTION

In real-time systems, the complexity of SoCs increases dra-
matically, as a result of the diverse functionalities required
by modern embedded computing (e.g., image recognition in
automated driving [1]) and the rapid evolution of manu-
facturing processes in the semiconductor industry (e.g., the
ability to produce 5nm ASICs [2]). Although modern SoCs
from different vendors typically have different architectures,
heterogeneity is always the key to more functionality [3]–
[5]. That is, the SoCs couple processing units with different
architectures, including hardware accelerators (HAs), on the
same chip, e.g., Tesla’s FSD Chip [6] integrates CPUs with
GPUs and a neural processing unit to accelerate image
processing and machine learning related applications.

As ‘bridges’ between different system elements, intercon-
nects become a dominant factor when determining the real-
time performance of heterogeneous SoCs [7]. It is imprac-
tical to manage the traffic flow of an interconnect solely
from the system software level, since the Primaries (e.g.,
processors) in heterogeneous SoCs are usually designed
with different instruction architectures (ISAs). This makes
managing interconnect transactions at the software level un-
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reliable, with an extremely high overhead, as frequent inter-
Primary communication and translation are required [7],
[8]. Therefore, it is crucial to guarantee predictability and
throughput of an interconnect at the hardware level.

The ARM Advanced Microcontroller Bus Architecture
Advanced eXtensible Interface (AMBA AXI) [9] is the most
widely used de-facto standard interface for interconnects,
which is used by billions of SoCs each year. A number
of industrial interconnects are based on this protocol, e.g.,
Xilinx’s AXI-InterConnect [10] and AXI-SmartConnect [11].
However, most of these were not designed for real-time
application scenarios. Within the context of real-time sys-
tems, some prototype interconnects have been developed.
These include, Restuccia et al. [12], Pagani et al. [13], and
Gomony et al. [14]. Existing interconnect designs are usually
based on FIFO queues, which prevent transaction prioriti-
zation based on importance and leave the real-time per-
formance of an interconnect entirely to scheduling from
the software level. However, as mentioned above, it is
difficult to ensure the predictability of an interconnect from
the software level, as the system elements in heteroge-
neous SoCs usually execute independently. Moreover, the
FIFO-based design also allows a low-priority transaction
to block a high-priority transaction when both transactions
are buffered in the same FIFO queue and the low-priority
transaction arrives before the high-priority transaction. This
phenomenon is also called physical priority inversion, which
brings additional unpredictability to the interconnect. Even
worse, these problems are further magnified when the
system scales with more hardware elements, since extra
resource contention/blocking is introduced.
Contributions. We present AXI-InterconnectRT (AXI-ICRT)
to provide guaranteed real-time performance in highly inte-
grated SoCs. Specifically, we present

• A novel micro-architecture, enabling random accesses of
buffered transactions and allowing transaction prioriti-
zation based on importance.
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Fig. 1. Hardware architecture of a heterogeneous SoC
(R: Router/Arbiter; PE: Processing element).

• A scalable two-layer compositional scheduler for AXI-ICRT ,
allocating the access time of the Secondaries to the
Primaries in a hierarchical manner, with guaranteed
real-time performance.

• A limited preemptive task model, describing execution
behavior of real-time jobs under the new architecture.

• A pseudo-polynomial time algorithm to address the
problem of selecting an optimal period and budget for
components consisting of sporadic task systems under
compositional scheduling. In coping with the limited
preemptivity of real-time tasks, a critical observation
(from Fig. 11) is provided to quantify the limited
preemptive scheduling induced utilization loss at the
server task level.

• A comprehensive experimental evaluation, including a
real-world use case, examining overhead, predictability
and performance of AXI-ICRT compared with state-of-
the-art interconnects.

The rest of the paper is organized as follows, Sec. 2
gives the background to the architecture of heterogeneous
SoC and ARM AMBA-AXI. Sec. 3 explains the real-time
issues associated with existing AXI interconnects. Sec. 4 and
Sec. 5 present the design of the real-time AXI interconnect
(AXI-ICRT), which resolves the revealed architectural issues.
Sec. 6 introduces an interface selection algorithm for AXI-
ICRT’s run-time configurations, further optimizing the real-
time performance of AXI-ICRT . Sec. 7 evaluates the AXI-
ICRT and Sec. 8 concludes the paper.

2 PRELIMINARIES

In this section, we introduce the top-level architecture of a
heterogeneous SoC (our platform) and the essential concepts
of an AXI interconnect.

2.1 Modern Heterogeneous SoC
It is difficult to introduce a unified hardware architecture
for different SoCs, because hardware architectures vary
depending on the practical demands. However, Fig. 1 gives
a top-level overview of a prototype heterogeneous SoC [7],
satisfying commonly required functionalities in modern
safety-critical systems, which is also used in the later eval-
uation. The introduced SoC is built on a Xilinx VC709
evaluation board and contains four major subsystems:
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Core subsystem. The core subsystem is responsible for the
execution of general-purpose software applications and op-
erating systems (OSs). It contains configurable numbers of
MicroBlaze processors [15] with instruction and data caches.
Memory subsystem. The memory subsystem manages
memory resources shared between different system ele-
ments, including both on-chip Static RAMs (SRAMs) and
off-chip Dynamic RAMs (DRAMs). The SRAMs are smaller
than the DRAMs, but enable faster memory access.
BlueShell Deep Neural Network (DNN) HA. The DNN
HA is modified using an open-source Network-on-Chip
(NoC), containing nine Multiply-And-Accumulate (MAC)
Processing Elements (PEs) arranged in a 3 × 3 array [16].
The DNN HA accelerates the execution of DNN inferences
by enabling parallel computation of different DNN blocks.
I/O subsystems. I/O subsystems contain shared I/O pe-
ripherals. Based on common features of the I/O peripherals,
we split the subsystems into two specialized domains, one
for low-speed I/Os and the other for high-speed I/Os.

The key trend of modern heterogeneous SoCs is to
couple increasingly more hardware elements (with different
architectures) on the same chip, leading to the hardware be-
coming highly integrated [3]–[5]. These hardware elements
are usually connected using an AXI interconnect.

2.2 ARM AMBA-AXI

Industrial and academic interconnects designed in compli-
ance with AMBA AXI, can be found, e.g., [11] and [12];
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however, the design details of these interconnects are not
always publicly available. Fig. 2 shows a generalized AXI
interconnect based on the official protocol [9] and existing IP
documentation. Using this diagram, we introduce the essen-
tial elements of an AXI interconnect and AXI transactions.
AXI bus. The AMBA AXI protocol defines a Primary-
Secondary interface, which allows simultaneous, bi-
directional data exchange. The AXI protocol introduces five
independent communication channels: Address Read (AR),
Address Write (AW), Read Data (R), Write Data (W), and
Write Response (B). Each of these channels has a group of
standard-defined signals [9].
AXI transactions. In AMBA AXI, a transaction is always ini-
tialized by a Primary (e.g., a processor). To issue a read/write
transaction, the Primary first sends a header packet con-
taining the information necessary for the transaction (e.g.,
Secondary address) to a Secondary using the AR/AW chan-
nel. In read procedures, response data is transferred back
to the Primary using the R channel. In write procedures,
write data is routed to a Secondary via the W channel,
and the Secondary uses the B channel to acknowledge the
transmission from the Primary. Fig. 3 shows an example of
a write transaction at the hardware level, where the black
lines show the transmissions from Primaries to Secondaries
(i.e., request paths) and the lighter grey lines show the
transmissions from Secondaries to Primaries (i.e., response
paths). Following the AXI protocol [9], we call the data
payload of a transaction a burst, and the packets of a burst
beats. In Fig. 3, the Primary issues a write burst with 3 beats
in a transaction.
AXI port. The AMBA AXI protocol introduces two types of
ports: Primary and Secondary ports. As regulated by AMBA
AXI 5.0 [9], Primary ports connect Secondaries, and the
Secondary ports connect the Primaries. Such connectivity
is established using the AXI bus. Corresponding to the AXI
bus, AXI ports also contain five communication channels.
AXI interconnect. An AXI interconnect has two responsi-
bilities: (i) receiving the requests/responses sent from a Pri-
mary/Secondary and then routing them to the correspond-
ing destinations; (ii) organizing the transaction order when
a Secondary/Primary receives multiple requests/responses.

To this end, an AXI interconnect introduces a group of
FIFO queues and multiplexers for each Secondary port in
the request path. During run-time, the FIFO queues buffer the
requests in the AR, AW, and W channels respectively, and
the multiplexers select the destinations of these requests.
Simultaneously, a group of FIFO queues and arbiters are
connected to each Primary port. These arbiters are entirely
independent of each other, and decide the access order of
requests sent to the connected Secondaries. In most existing
work and commercial IPs (e.g., [3], [8], [9]), a round-robin
scheduling policy is adopted in the arbiters. In the response
path, symmetric structures of the R and B channels are
implemented.

3 RESEARCH CHALLENGES AND RELATED WORK

3.1 Research Challenges and Motivation
Conventional AXI interconnects cannot ensure the time-
predictability of transactions, because they are usually de-
signed using FIFO queues. The FIFO-based design serves

transactions according to their arrival order, preventing the
prioritization of transactions based on their importance and
leaving the predictability of the transactions entirely to the
Primaries and Secondaries. However, Primaries and Sec-
ondaries in heterogeneous SoCs usually execute indepen-
dently, leading to frequent contentions in the interconnect,
and so significantly damaging the system predictability.

Moreover, the FIFO-based design leads to occurrences
of physical priority inversion. That is, a low-priority trans-
action blocks a high-priority transaction when both trans-
actions are buffered in the same FIFO queue and the low-
priority transaction arrives before the high-priority transac-
tion. Such blocking occurs in two scenarios:
Secondary-port blocking. Secondary-port blocking occurs
between requests/responses issued from the same port.
Taking Fig. 1 as an example, tasks executed on the same
processor can cause frequent Secondary-port blocking when
they keep accessing the interconnect concurrently.
Primary-port blocking. Primary-port blocking occurs be-
tween the requests/responses issued from different ports,
but sent to the same destination. Taking Fig. 1 as an example,
the processors in the core subsystem and PEs in the DDN
HA can suffer frequent Primary-port blocking when they
keep reading the same memory bank simultaneously.

As an increasing number of hardware elements are in-
tegrated into the modern heterogeneous SoCs, to solve the
above real-time issues, both dependency and scalability must
be taken into account, as they could further magnify the
issues in the AXI interconnects.
Dependency. As shown in Fig. 2, an AXI interconnect
fully connects the Primaries and Secondaries in the system.
Therefore, blocking which occurs in one transaction path
can cause or magnify blocking in the other paths. More
seriously, such interference usually occurs repetitively and
recursively between the transaction paths, which largely
magnifies the unpredictability of the interconnect [12], [17].
Scalability. With the increase in system complexity, modern
SoCs always introduce additional Primaries and Secon-
daries, creating more transaction paths in the interconnect
and bringing more data transferred between the Primaries
and Secondaries. This adds significantly more resource con-
tention/blocking in the interconnect and further magnifies
the introduced issues [18].

These issues lead to challenges in designing a real-time
AXI interconnect for modern heterogeneous SoCs.

3.2 Related Work

Existing work focusing on interconnect real-time perfor-
mance can be mainly classified as duplicated channels, band-
width reservation, and hierarchical connections. Note that com-
munication protocols are not restricted in the review, as
ideally, all these methods are compatible with AMBA AXI.
Duplicated channels (Fig. 4(a)). A straightforward way to
improve interconnect real-time performance is by dupli-
cating the communication channels. For example, Liao et
al. [19] and Loh et al. [20] implement “virtual channels” for
the interconnect transaction paths. In industrial patents, du-
plicated channels are also created for specific transactions,
e.g., secure messages [21], video processes [22], and I/O
communication [23]. As evidenced in the evaluation [19],
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[20], duplicating the communication channels considerably
enhances system-level throughput. However, the addition-
ally introduced channels bring extra resource contentions,
e.g., transactions buffered in different virtual channels can
simultaneously access a Primary port, which further magni-
fies the problems reviewed in Sec. 3.1. At the same time, this
method also significantly increases hardware consumption.
Bandwidth reservation (Fig. 4(b)). Bandwidth reservation
is usually used to ensure the services of specific transaction
paths. To achieve this, the interconnect first assigns a prior-
ity to each Primary (or Secondary port) and then allocates
them a certain bandwidth based on their priorities. For
instance, Restuccia et al. [24] introduce an AXI burst equal-
izer to re-organize transactions, ensuring that all Secondary
ports are able to use the same bandwidth. Hebbache et
al. [25] and Pagani et al. [13] propose a dedicated AXI
controller to reserve bandwidth for high priority Primaries.
Bandwidth reservation ensures throughput and predictabil-
ity of certain Primaries. The method reduces design flexibility
and interconnect utilization, since the interconnect must ac-
curately achieve transaction information before run-time and
always preserve sufficient bandwidth for the high-priority
Primaries at run-time.
Hierarchical connections (Fig. 4(c)). There are also intercon-
nects with multiple hierarchies. Specifically, Secondary ports
are grouped into different partitions, and the Secondary
ports in the same partition are connected to a local inter-
connect. At the same time, a global interconnect connects
these local interconnects and Primary ports, enabling com-
munication between the Primaries and Secondaries. For ex-
ample, Audsley [26] introduces a tree-like structure to sup-
port multiple-level connections between local interconnects.
Wang et al. [27] further extend this structure [26] to support
128 Primaries. This method brings partial optimizations to
the interconnect. However, like the other methods, it is not
able to solve the fundamental problems in Sec. 3.1.

4 AXI-ICRT: OVERVIEW

To guarantee the time-predictability of transactions, we
present a new real-time AXI interconnect (AXI-ICRT), em-
ploying Random Access Queues (RAQs) and Transaction
Control Units (TCUs) to buffer and schedule the transac-
tions, respectively (again, Conventional AXI interconnects
are designed using FIFO queues). The RAQs support ran-
dom accesses of buffered transactions, prioritizing transac-
tions based on their importance. The TCUs enable compo-
sitional scheduling at the hardware level, simultaneously
ensuring the transactions’ predictability and performance.
Associated with the new hardware design, we present an

interface selection algorithm (Sec. 6) and the associated
analysis framework to find the optimized configurations of
the AXI-ICRT , further optimizing its real-time performance.

4.1 Context
Based on the latest AMBA protocol (AMBA 5.0) [9], we
assume that (i) each Primary has a unique ID (i.e., PID);
and, (ii) a single source of timing is used through the
entire system, ensuring global synchronization. Here, as an
example, we describe the design and guarantees for the
write-related channels, i.e., AW, W, and B channels. This is
because the protocol regulates independent Write and Read
channels. In practice, we also built and analyzed the AR (R)
channel using the same method as the AW (W) channel.

4.2 Design Concepts
We present three main design concepts (DCs) for AXI-ICRT :
DC 1: RAQ-based micro-architecture. AXI-ICRT removes
the FIFO queues used in conventional interconnects, pre-
senting new RAQs to buffer transactions. Unlike FIFO
queues, RAQs support random accesses of buffered trans-
actions, avoiding physical priority inversion and enabling
transaction prioritization.
DC 2: Online monitoring and grouping. AXI-ICRT mon-
itors and decodes incoming transactions to extract the as-
sociated parameters. Based on these parameters, AXI-ICRT

groups transactions sent to the same destinations and sched-
ules each group using a dedicated TCU. This prevents inter-
ference between transactions sent to different destinations.
DC 3: Real-time compositional scheduling. In light of the
new architecture, a compositional scheduling policy can be
implemented to ensure the predictability and scalability of
this highly integrated system. Given the parameters of the
task set executed by a Primary, the near-optimal transaction
time of the corresponding TCU shared by the Primary
will be calculated independently, and the transaction time
shared by the other Primaries will not be altered.

4.3 Top-level Micro-architecture
Fig. 5 illustrates the top-level micro-architecture of AXI-
ICRT . In the interfaces, we retain standard AXI ports to
ensure compatibility with existing systems designed for con-
ventional AXI interconnects.

In request path, we introduce an AXI-decoder connected
to each Secondary port; two RAQs (for AW and W channels)
and a TCU connected to each Primary port. During run-
time, AXI-decoders monitor the AW channels. Once an
AXI-decoder captures a transaction header, the AXI-decoder
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decomposes this header and extracts the transaction param-
eters. Based on the destination of the transaction, the AXI-
decoder routes the transaction and its parameters to the
corresponding RAQs and TCU, respectively. At the same
time, the TCUs schedule the transactions for the Secondaries
based on the transaction parameters.

In response path (i.e., B channel), we adopt pass-through
connections, because transactions always involve a single-
packet response, and the Primaries (e.g., processors) are faster
than the Secondaries (e.g., memory and I/Os). This leads to
the transmission time in the B channel being negligible.

4.4 Scheduling Method: Compositional Scheduling

As modern computing systems are highly integrated, they
need to be designed, implemented, and certified as several
independent components (i.e., Primaries), with each com-
ponent having the “illusion” of executing on a dedicated
virtual platform [28]–[30]. Thus, in a system using AXI-
ICRT , transactions are scheduled in a hierarchical manner;
a Global Scheduler (G-Sched) allocates the transaction time of
the physical platform to each component and determines
the characteristics of the virtual platform in each compo-
nent. Each component then has a Local scheduler (L-Sched)
to schedule that component’s transactions on that virtual
platform (VP).

In order to analyze the schedulability of each com-
ponent, interfaces are required to characterize the supply
provided by the VP, i.e., the available time units for each
transaction, obtained from the interconnect to support the
transactions. For instance, the periodic resource model [31] is a
fundamental interface which characterizes a VP using a pair
of parameters (Π,Θ), with the interpretation that at least Θ
time units of processor time are guaranteed to the supported
task set every Π time units. The quotient Θ/Π is called the
bandwidth of this VP. Given real-time tasks in the computing
system, the optimal interface selection algorithm for each
component will be provided in Sec. 6. In Sec. 5, we begin
by showing how to implement the hierarchical scheduling
method in the hardware.
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5 AXI-ICRT: DESIGN

As discussed in Sec. 4, the AXI-ICRT design is modularized,
comprising three key elements: RAQs, AXI-decoders, and
TCUs, which are further detailed in this section.

5.1 Random Access Queues (RAQs)
Memory is the most typical hardware element supporting
random storage accesses. However, we cannot use memory
for transaction buffers in an interconnect, as it has a sig-
nificantly slower access speed with extra timing uncertainty
compared to the FIFO queues in conventional interconnects.
Thus, we designed RAQs to buffer transaction headers (in
AW and AR channels) and bursts (in W and R channels).
The design of the RAQ comprises a RAQ bank and multiple
RAQ controllers (see Fig. 6).
RAQ bank. A bank cell is the essential element of a RAQ
bank, with a unique address starting from 0x01.§ The bank
cell design has two parts: a payload FIFO and a cell header.
Specifically, the payload FIFO stores the transferred content
(i.e., a header or a burst of a transaction), and the cell header
stores the transaction parameters, including TID (bits 0 - 7)
and PID (bits 8 - 15). We also use the cell header’s highest
bit to indicate the validity of this bank cell.

§. We use the address 0x00, which indicates an invalid address.
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The depth of a payload FIFO is configurable, providing
flexibility for customization. For instance, we configure the
payload FIFOs’ depth as 1 for the AW and AR channels, as
a transaction’s header is always encapsulated in one packet.
RAQ controllers. We also present write/read controllers to
store/fetch the content in the RAQ bank. A write/read con-
troller contains two interfaces connected to the cell headers
and payload FIFOs, respectively. In the storing procedure, the
write controller first reads the cells’ headers to check the cell
validity (i.e., header.bit[16]). If the controller finds an unused
bank cell (i.e., header.bit[16] == 0), it sets the cell header.bit[16]
to 1 and then starts to push the transfer content to the
payload FIFO. In the fetching procedure, the read controller
pulls the content from a payload FIFO using its address,
and then writes the cell’s header.bit[16] to 0. As introduced
in DC-2 and DC-3, the AXI-ICRT relies on TCUs to schedule
transactions, and the TCUs always return a transaction’s
TID and PID (see Sec. 5.3 for TCU design). Therefore, we
also present a combinational logic circuit using the read
controller and the RAQ bank to convert the IDs into the
address of a specific bank cell in a fixed single clock cycle.

5.2 AXI-decoder
We first discuss online transaction monitoring and decom-
position, which are the main concern of the AXI-decoders,
followed by the design details of the AXI-decoder.
Online monitoring. Online monitoring captures each trans-
ferred transaction, and decomposition decodes the transac-
tion’s issuing and destination information.

As discussed in Sec. 2.2, an AXI transaction always ini-
tializes from the AW/AR channel, which presents the neces-
sary information using a transaction header. Therefore, the
AXI-decoder is only required to monitor these two channels.
Here we give an example of monitoring and decomposition
using the AW channel. The AW channel issues a transaction
header by setting the AWVALID and AWREADY signals to
1, giving AWID validity to represent the PID and AWADDR
the transaction destination.

To support the proposed scheduling method in Sec. 4.4,
the TCU also requires the transaction TIDs and priority.
However, the AMBA AXI protocol specification does not
regulate specific signals for TIDs, and the only candidate
signals for the priority (i.e., AWQoS) contain only 4 bits
– supporting up to 16 priority levels. Therefore, we use

AWUSER to represent the TID bits 0 − 7) and priority bits
8 − 23). Note that, AMBA AXI 5.0 reserves AW/ARUSER
signals for customization [9]. The example shown in Fig. 7
shows the Primary (PID: 0x02) initializing three transac-
tions, with TID 0xF1, 0x0F, and 0x01. The transaction pri-
orities are 0x0700, 0x0300, and 0x0400.
Transactions’ priority. In practice, a software job may re-
lease multiple outstanding transactions continuously. To
maintain a consistent transfer order for each software job’s
transactions, we introduce a 16-bit format for transaction
priorities, with the high 8 bits inheriting the priority of
the job; and the low 8 bits representing the transaction’s
offset. Using this format, we can unify the transfer order of
transactions sent from the same Primary: (i) for transactions
released by different jobs, the highest priority job’s transac-
tion is served first; (ii) for transactions released by the same
job, the earliest released transaction is first.
AXI-decoder design (Fig. 8). The design of an AXI-decoder
contains an address decoder, a register bank, and some
combinational circuits.
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Fig. 8. Micro-architecture of an AXI-decoder.

The address decoder (implemented using a look-up-
table) and the combinational circuits convert the AXI signals
into transaction information using the method introduced
above. Since we implement these modules without sequen-
tial logic, the AXI-decoder can always complete each de-
composition in a fixed single clock cycle. The register bank
contains four data registers and one control register. The
data registers store the decomposed transfer information,
and the control register determines when to load/reset the
data registers.

5.3 Transaction Control Unit (TCU)
TCUs are the brains of AXI-ICRT and determine the trans-
action order of the Secondaries they manage using the
compositional scheduling method described in Sec. 4.4. The
global scheduler (G-Sched) and the local schedulers (L-Scheds)
are the main components of the TCU.
G-Sched (Fig. 9(a)). The G-Sched manages scheduling at
the global level. Specifically, we associate two countdown
counters to each Primary (i), the Server Counter (S-Counter)
and the Period Counter (P-Counter). The S-Counter stores
the Primary’s transaction budget (Θi) and the P-Counter
manages its refresh period (Πi). We introduce the same
micro-architecture for all counters; a counter has three regis-
ters which store the counter’s reset value, current value and
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Fig. 9. Micro-architecture of a TCU.

priority. The counter interfaces, have three input ports and
two output ports. The input ports are used to configure,
reset, and enable the counter, and the output ports return
the counter’s current value and priority. Note that, the P-
Counters’ priority ports are only used to present the Primary
priorities and tie off the S-Counter priority ports. During
run-time, the current value of a counter is reset when its
reset port equals 0 (i.e., active low). It reduces the current
value by one when its enable port meets a rising edge. To
reset the counters for Primary i every Πi, the P-Counter’s
value output is connected to its reset ports and its associated
S-counter. Moreover, a counter’s reset value and priority can
also be updated online using its configure port.
L-Scheds (Fig 9(b)). To support scheduling in the local
level, we introduce a dedicated Transaction Information
Block (TIB) and an L-Sched to each Primary. Specifically,
the TIB records the transaction parameters decomposed by
the AXI-decoder, including PID, TID and priority; the L-
Sched compares the transaction priorities and always re-
turns the TID of the transaction with the highest priority.
We designed the L-Sched using only combinational logic,
ensuring scheduling in the local layer is always completed
in a fixed single clock cycle.

Finally, we present a switch to collect the scheduling
results from G-Sched and L-Scheds. The switch returns the
PID and TID of the transaction with the highest priority
which was transferred by the Primary with enough transac-

tion budget.
Above we discuss the AXI-ICRT design. In the next

section, we introduce a pseudo-polynomial time algorithm
for the problem of selecting both a period (Πi) and budget
(Θi) for components consisting of sporadic task systems
under compositional scheduling.

6 AN INTERFACE SELECTION ALGORITHM

Our two-layer scheduler is designed to allocate free time
slots to the transactions in a hierarchical manner, which is
shown in Fig. 5. In the global layer, each Primary issues a
sequence of transactions. These transactions are processed
in the available time slots are allocated to n Primaries. We
assume that each time slot’s duration equals the length of a
transaction. The worst-case processing time of a transaction
is denoted by q. To facilitate the hierarchical allocation in
our architecture, each Primary i (1 ≤ i ≤ n) is supported
by a periodic server task Γi = (Πi,Θi) with the interpre-
tation that the server task is invoked every Πi time slots
and receives at least Θi time slots between consecutive
invocations. We assume that both Πi and Θi parameters
are multiples of q. The transactions from Primary i will be
executed using the time slots received by Primary i. The
transactions are modeled by a set of sporadic tasks, each of
which is denoted τh = (Th, Ch, Dh). τh releases a sequence
of jobs, with minimum separation of Th time slots, where
each job consists of a batch of consecutive transactions and
completes within Ch time slots of execution. Each job has a
deadline at Dh time slots after it is released. According to the
hardware implementation of the local scheduler, it performs
the transactions one-by-one. Thus, the earliest time instant
when a released job can be scheduled for execution is the latest
time instant when the local scheduler performs a new transaction.
We assume constrained deadlines, i.e., ∀h,Dh ≤ Th. Let Ti
denote the task set in Primary i, i.e., τh ∈ Ti means task τh
is in Primary i. A job of any task can only be preempted
between transactions. The utilization of task τh is defined
by uh = Ch/Th, and we let Ui denote the total utilization of
the task set in Primary i, i.e., Ui =

∑
τh∈Ti

uh. The demand
bound function dbfh(t) gives the maximum demand of task τh
in any time interval of length t, where the demand is defined
by the total work required to complete jobs that have both
release times and deadlines within the time interval, and
can be calculated as follows [32]:

dbfh(t) = max

{(⌊
t−Dh

Th

⌋
+ 1

)
Ch, 0

}
. (1)

We also denote the total demand of all tasks in Primary i by

DBFi(t) =
∑

τh∈Ti

dbfh(t). (2)

In light of the server task model, the parameters Πi and
Θi are respectively referred to as the period and capacity of
the server task Γi. The ratio of the budget and server period
represents the interface bandwidth of the server task, de-
noted as wi = Θi/Πi. A system-level scheduling algorithm
allocates the transaction time among the different periodic
server tasks that share the same Secondary, such that each
server task receives (for every period) aggregate transaction
time equivalent to its capacity. If the system-level scheduling



8

𝑡𝑡

Π𝑖𝑖

Θ𝑖𝑖

𝑥𝑥Π𝑖𝑖 − Θ𝑖𝑖

𝑥𝑥
Π𝑖𝑖

�Θ𝑖𝑖
𝑦𝑦

Fig. 10. Worst-case supply of a periodic resource.

T

Fig. 11. Maximum interval that consists of integral transactions.

algorithm is Earliest-Deadline-First (EDF), then it is known
(e.g., see [33]) that periodic server tasks {Γ1,Γ2, . . . ,Γm}
can successfully guarantee the capacity parameters to their
respective components, if and only if, the total system
bandwidth does not exceed one, i.e.,

∑m
i=1 wi ≤ 1.

6.1 Schedulability Test
In this subsection, we provide a schedulability test that
determines whether a task set Ti is schedulable for a given
resource period Πi and a given budget Θi.

The supply bound function (SBF) of a periodic server task,
denoted sbf(t), indicates the minimum interconnect time this
periodic server task can supply during any time interval of
length t. Shin and Lee [33] have shown that sbf(Θi,Πi, t)
can be calculated by

sbf(Θi,Πi, t) =

{
0 if x < 0⌊

x
Πi

⌋
·Θi + y if x ≥ 0

where x and y are for notational simplicity and are defined
by

x = t− (Πi −Θi),

y = max

{
x−

⌊
x

Πi

⌋
Πi − (Πi −Θi), 0

}
.

This definition reflects the worst-case scenario illustrated
in Fig. 10. In AXI-ICRT , the execution is transaction based
and therefore partial transactions do not contribute to the
supply of a time interval. Consequently, the worst-case
supply for any time interval of length t in AXI-ICRT is
calculated as follows, the scenario for which is illustrated
in Fig. 11.

sbfT(Θi,Πi, t) = sbf(Θi,Πi, t
T),

where

tT = t− (q − 1)−
((

t− (q − 1)
)
mod q

)
=

⌊
t− (q − 1)

q

⌋
q =

(⌊
t+ 1

q

⌋
− 1

)
q.

Thus, we can derive the following SBF that takes the
effect of transactions in account.

sbfT(Θi,Πi, t) =

{
0 if xT < 0⌊
xT

Πi

⌋
·Θi + yT if xT ≥ 0

(3)

where xT and yT are for notational simplicity and defined
by

xT =

(⌊
t+ 1

q

⌋
− 1

)
q − (Πi −Θi),

yT = max

{
xT −

⌊
xT

Πi

⌋
Πi − (Πi −Θi), 0

}
.

Theorem 1. All tasks in Primary i must meet their deadlines if
and only if

∀t,DBFi(t) ≤ sbfT(Θi,Πi, t). (4)

Proof. We prove the equivalent statement: some deadline is
missed if and only if ∃t such that DBFi(t) > sbfT(Θi,Πi, t).
Let td denote the earliest deadline that is missed. Let Ψ
denote the set of jobs with deadline at or before td. Let t0
denote the latest time instant before td such that all jobs
in Ψ released at or before t0 have finished by t0. As a
result, a job in Ψ must be released at t0 and at any time
instant during [t0, td], there must be some pending job in Ψ.
Therefore, during [t0, td], the completed work for jobs in Ψ
is sbfT(td−t0) even in the worst case. On the other hand, by
the definition of t0, such work must be from jobs released at
or after t0 and therefore the amount of such work is up to
DBF(td − t0). Therefore, the deadline at td being missed if
and only if DBF(td− t0) > sbfT(td− t0). Letting t = td− t0,
the theorem follows.

We next show an upper-bound on the t to be examined
for applying Thm. 1 and thereby derive a schedulability test
that runs in pseudo-polynomial time.

Lemma 1. If Ui < wi, then ∀t ≥ ΥiUi+2(q−1+Πi−Θi)wi

wi−Ui
,

DBFi(t) ≤ sbfT(Θi,Πi, t), where Υi = maxτh∈Ti{Th −Dh}.

Proof. We denote task set T ′
i (t) = {τh | τh ∈ Ti ∧Dh ≤ t}. It

is clear that ∀t, T ′
i (t) ⊆ Ti. Then, we have

DBFi(t) =
∑

τh∈T ∗
i (t)

(⌊
t−Dh

Th

⌋
+ 1

)
Ch +

∑
τh∈Ti\T ∗

i (t)

0

≤
∑

τh∈T ′
i (t)

(
t−Dh

Th
+ 1

)
Ch

≤ (t+ max
τh∈T ′

i (t)
{Th −Dh})×

∑
τh∈T ′

i (t)

uh

≤ (t+ max
τh∈Ti

{Th −Dh})×
∑

τh∈Ti

uh

= (t+Υi)Ui.

On the other hand, by Eq. (3), we have

sbfT(Θi,Πi, t) ≥
(
tT − 2(Πi −Θi)

)
wi

≥
(
t− 2(q − 1)− 2(Πi −Θi)

)
wi,
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where the second “≥” takes “=” when t = ℓq+(q−2), ℓ ∈ N.
Therefore,

DBFi(t) ≤ sbfT(Θi,Πi, t)

⇐ (t+Υi)Ui ≤
(
t− 2(q − 1)− 2(Πi −Θi)

)
wi

⇐ Ui < wi ∧ t ≥ ΥiUi + 2(q − 1 + Πi −Θi)wi

wi − Ui
.

The lemma follows.

Lemma 2. Ui < wi is necessary for (4) to be true.

Proof. We let H = lcmτh∈Ti
{Th} denote the hyper-period of

all tasks in Primary i. Then, due to constrained deadlines,
DBFi(H) = H × Ui. On the other hand, by (3) (or, by
observing Figs. 10 and 11), we have ∀t, sbfT(Θi,Πi, t) <
t × wi, which implies sbfT(Θi,Πi, H) < H × wi. Thus,
Ui < wi, or H × Ui < H × wi, is necessary for DBFi(H) ≤
sbfT(Θi,Πi, H), which is necessary for (4).

By Thm. 1 and Lems. 1 and 2, the following theorem
holds, which implies a pseudo-polynomial-time schedula-
bility test.

Theorem 2. All tasks in Primary i must meet their deadlines if
and only if Ui < wi and

∀t < Z,DBFi(t) ≤ sbfT(Θi,Πi, t),

where Z = ΥiUi+2(q−1+Πi−Θi)wi
wi−Ui

and Υi = maxτh∈Ti{Th −Dh}.

6.2 Selection Range for Feasible Periods
In this subsection, we provide a bounded range for choosing
the resource period Πi for each server task Γi. This is a
basis for our next step to determine the interface for each
Primary i.

Lemma 3. The period of the periodic resource server task Γi for
task set Ti in Primary i must be upper bounded by

q

1−
∑

j ̸=i Uj
≤ Πi ≤

minτh∈Ti{Dh − Ch}
2
∑

j ̸=i Uj

Proof. It is clear that, for each Primary j, the bandwidth of its
periodic resource server must be at least the total utilization
of the task set in it, i.e., ∀j, wj ≥ Uj . On the other hand,
in order to be feasible, the total system bandwidth of all
periodic resource servers cannot exceed one, i.e.,

∑
j wj ≤ 1.

Therefore, it is necessary that

wi ≤ 1−
∑
j ̸=i

wj ≤ 1−
∑
j ̸=i

Uj .

Then, focusing on Primary i, according to the periodic
resource model, it may have time intervals up to length of
2(Πi − Θi) = 2Πi(1 − wi) that provide no budget to task
set Ti. Therefore, to be schedulable in the worst case, it is
necessary for each task τh ∈ Ti that 2Πi(1− wi) + Ch ≤ Dh,
i.e., 2Πi(1− wi) ≤ minτh∈Ti

{Dh − Ch}. Thus,

Πi ≤
minτh∈Ti{Dh − Ch}

2(1− wi)
≤ minτh∈Ti{Dh − Ch}

2
∑

j ̸=i Uj
.

On the other hand, because Θi must be multiple of trans-
actions, i.e., multiple of q, we have Θi ≥ q. Due to
Θi

Πi
= wi ≤ 1 −

∑
j ̸=i Uj as we shown earlier in this proof,

we have

Πi ≥
Θi

1−
∑

j ̸=i Uj
≥ q

1−
∑

j ̸=i Uj
.

Thus, the lemma follows.

Corollary 1. The resource period Πi for Primary i must be
selected as Πi = ℓ × q for some integer ℓ that is within the
following range

⌈
1

1−
∑

j ̸=i Uj

⌉
≤ ℓ ≤

⌊
minτh∈Ti

{Dh − Ch}
q × 2

∑
j ̸=i Uj

⌋
.

Proof. This corollary directly follows from Lem. 3, given that
Πi must be a multiple of q. ⌈a/q⌉×q is the smallest multiple
of q that is greater than or equal to a, and ⌊b/q⌋ × q is the
largest multiple of q that is less than or equal to b.

6.3 Interface Selection

In this subsection, we present our interface selection algo-
rithm that provides the pair of (Πi,Θi) to each Primary i.

An interconnect’s functionality, as we know it, is routing
the requests and responses between the Primaries and the
Secondaries. To ensure the system’s real-time performance,
Algorithms 1-3 are proposed to determine the interface for
each Primary, i.e., the scheduling parameters for each server
task. The pseudo-code is presented in Alg. 1, where the
subroutine MinBudget is described in Alg. 2 in which the
subroutine SchedTest is described in Alg. 3. In particular,
by Lem. 3, it is assigned that Πmin =

⌈
1

1−
∑

j ̸=i Uj

⌉
× q and

Πmax =
⌊
minτh∈Ti

{Dh−Ch}
q×2

∑
j ̸=i Uj

⌋
× q when calling the function

InterfaceSelect for each Primary i.
The goal of Alg. 1 is to find an interface pair (Πi,Θi)

that guarantees the deadlines of all tasks in Primary i to
be met while minimizing the bandwidth wi = Θi/Πi.
Specifically, Lines 2 – 11 iterate all multiples of q in the range
[Πmin,Πmax] for potential selection of Πi, and Line 4 calls
subroutine MinBudget, as described in Alg. 2, to find the
minimum required (for guaranteeing schedulability) budget
for each given Πi selection in a binary-search manner. Please
note that, the input Πi for MinBudget (Alg. 2) is supposed
to be a multiple of q, and it returns a multiple of q as well.
SchedTest(Ti,Πi,Θi) is the schedulability test as proven in
Thm. 2, for any given task set Ti and interface pair (Πi,Θi).
Time Complexity. Although the range of Πi given by Lem. 3
depends on the total utilization in other Primaries (Uj), we
can further see that this range must be a sub-interval of[
q,

minτh∈Ti
{Dh−Ch}

2c1

]
if there exists some positive constant

c1 ≤ Uj ,∀j. That is, there are pseudo-polynomial number
of iterations in InterfaceSelect (Alg. 1) for systems with at
least two Primaries and the task utilization in each Primary
is lower-bounded by some constant c1 > 0 (e.g., even
c1 = 0.0001 is fine). Due to the logarithmic complexity of
binary search, MinBudget (Alg. 2) has polynomial number
of iterations. SchedTest (Alg. 3) has a pseudo-polynomial
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Algorithm 1: InterfaceSelect(Ti,Πmin,Πmax)

1: wi ←∞
2: π ← Πmin

3: repeat
4: θ = MinBudget(Ti, π)
5: if θ/π < wi then
6: wi ← θ/π
7: Πi ← π
8: Θi ← θ
9: end if

10: π ← π + q
11: until π > Πmax

12: if wi ̸=∞ then
13: return (Πi,Θi)
14: else
15: return FAILURE
16: end if

Algorithm 2: MinBudget(Ti,Πi)

1: lo← 1
2: hi← Πi/q
3: if SchedTest(Ti,Πi,Πi) = false then
4: return ∞
5: end if
6: while lo < hi do
7: mid← ⌊(lo+ hi)/2⌋
8: if SchedTest(Ti,Πi,mid× q) = true then
9: hi← mid

10: else
11: lo← mid+ 1
12: end if
13: end while
14: return hi× q

Algorithm 3: SchedTest(Ti,Πi,Θi)

1: if Ui ≥ wi then
2: return false
3: end if
4: Υi ← maxτh∈Ti{Th −Dh}
5: Z ← (ΥiUi + 2(q − 1 + Πi −Θi)wi)/(wi − Ui)
6: t← minτh∈Ti{Dh}
7: repeat
8: if DBFi(t) > sbfT(Θi,Πi, t) then
9: return false

10: end if
11: t← t+ 1
12: until t ≥ Z
13: return true

time complexity for any Primary i such that wi−Ui is lower-
bounded by some constant c2 > 0 (e.g., even c2 = 0.0001
is fine). To sum up, the time complexity of the interface
selection algorithm is the product of a pseudo-polynomial,
a polynomial, and a pseudo-polynomial, which is still in
pseudo-polynomial time.

7 EVALUATION

AXI-ICRT is examined through system implementations.

7.1 Experimental Platform

We built a heterogeneous SoC (introduced in Fig. 1) on a
Xilinx VC709 evaluation board. For the core subsystem, we
implemented 16 MicroBlaze processors [34], with FreeRTOS
(v.10.4) as the OS kernel for all processors [35]. At the same
time, we instantiated two DNN HAs, following the IPs’
default settings to present 9 MAC PEs in each DNN HA.

We implemented the AXI interconnect in the SoC using
a traditional design (AXI-TD), duplicated channels (AXI-
DC), reserved bandwidth (AXI-RB), hierarchical connec-
tions (AXI-HC), and AXI-ICRT . For AXI-TD and AXI-ICRT ,
we used the design methods described in Sec. 2.2 and Sec. 5
respectively. In AXI-ICRT , the interface parameters were
obtained using the algorithms provided in Sec. 6. For each of
the other interconnects, different variants are demonstrated
in the literature. Our implementations of the other intercon-
nects looked to find common ground representing their key
characteristics, as follows:
AXI-DC (Fig. 4(a)). A “virtual channel” to all the commu-
nication paths was implemented. A transaction was trans-
ferred using the channel with the fewest buffered transac-
tions.
AXI-RB (Fig. 4(b)). Equal importance was assumed for Pri-
maries; identical bandwidths were assigned to each Primary.
AXI-HC (Fig. 4(c)). The Primaries were grouped into four
partitions and connected to a local interconnect. At the
same time, the local interconnects and the Secondaries were
connected to a global interconnect.

All interconnects were implemented using BlueSpec Sys-
tem Verilog [36] and compiled into Verilog. The hardware
in the system was synthesized and deployed using Vivado
(v2020.2) [15], and the software executing on the processors
(OS kernels, drivers and user applications) was compiled
using the Xilinx MicroBlaze GNU tool-chain [34].

7.2 Hardware Overhead

Experimental setup. We first configured the AXI intercon-
nects to support 8/16 outstanding transactions for each
Primary/Secondary and compared the interconnects’ hard-
ware overhead in terms of Look-Up-Tables (LUTs), registers,
DSPs, RAMs, and power. Using this configuration, the traffic
pressure was considered close to practical applications and
able to facilitate overhead observation. We then compared the
AXI-ICRT against other hardware elements in the system,
i.e., general-purpose processors (MicroBlaze and RISC-V)
and the entire SoC, to examine AXI-ICRT’s hardware over-
head from a system perspective. The MicroBlaze was full-
featured, enabling all performance related functionalities
(e.g., pipeline and data cache). The RISC-V was imple-
mented based on [37], supporting all functionalities of the
MicroBlaze, as well as multi-branch, out-of-order processing
and related functionalities (e.g., branch-prediction). The SoC
is introduced in Sec. 2.1, excluding the AXI interconnect.
Obs 1. AXI-ICRT consumed similar hardware resources
compared to existing AXI interconnects.
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TABLE 1
Hardware overhead (implemented on FPGA)

LUTs Registers DSPs RAMs(KB) Power(mW)
Proposed 4,745 4,184 0 0 44
AXI-TD 3,785 4,839 0 0 39
AXI-DC 4,538 7,588 0 0 58
AXI-RB 4,342 4,795 0 0 47
AXI-HC 9,829 5,593 0 0 68

MicroBlazes 4,908 4,385 6 256 359
RISC-V 7,432 16,321 21 512 583

SoC 141,718 113,627 174 16,384 2,904

This observation is shown by comparing the intercon-
nects’ hardware overhead presented in Table 1. AXI-
ICRT required fewer registers than other AXI-interconnects.
Specifically, it consumed 665 (13.5%) fewer registers than
AXI-TD, 3,404 (44.9%) fewer than AXI-DC, 611 (12.7%)
fewer than AXI-RB, and 1,409 (25.2%) fewer than AXI-HC.
Such improvement benefited from deploying RAQs in AXI-
ICRT . Unlike conventional interconnects implementing FIFO
queues for each Primary and Secondary, AXI-ICRT imple-
ments RAQs for transaction paths. This allows Primaries
and Secondaries to share the RAQs in each transaction
path. We found that AXI-ICRT required slightly more LUTs
than other interconnects, since AXI-ICRT presents new AXI-
decoders and TCUs, which are designed using combina-
tional logic.
Obs 2. From a system perspective, the design of the AXI-
ICRT was resource-efficient.

As shown in Table 1, AXI-ICRT consumed less hardware
compared to the other main system elements. Specifically,
compared to the MicroBlaze processor AXI-ICRT required
163 LUTs, (3.3% of a MicroBlaze), 201 registers (4.6%), and
315 mW (87.7%). It also consumed 2,687 (36.2%) LUTs,
12,137 (74.4%) registers, and 539 (92.5%) mW less than
the RISC-V processor. Over the entire SoC, the hardware
required by AXI-ICRT was less than 4% (for all metrics).

7.3 Synthetic Workloads: Transmission Efficiency and
Real-time Performance

Experimental setup. We deployed 4/8/16 processors as
transaction generators (Primaries) and implemented 4 ded-
icated transaction operators (Secondaries). We then con-
nected them to the same interconnect. During experiments,
a generator randomly generated 2-4 transactions for each
operator and assigned a unique priority to each transaction.
The operators acknowledged the Primaries for transactions
without processing any data. The generator paused until it
had no outstanding transactions and then started to reissue
new transactions. Synthetic transaction workloads such as
this provide traffic patterns close to practical applications
and facilitate behavior observation. We examined intercon-
nect transmission efficiency and real-time performance us-
ing the propagation and blocking latency of transactions. The
propagation latency of a transaction records its response
time from issue to completion. The blocking latency of
a transaction indicates the duration of time it is blocked
by transactions with lower priority. The experiments were
executed 1,000 times.

Obs 3. AXI-ICRT had the best transmission efficiency when
workloads were not intensive. With an increase in workload
intensity, this benefit decreased slightly.

This observation is shown in the comparison between
the propagation latency of three experimental groups in
Fig. 12. In experiments with 4 transaction generators, the
transactions in AXI-ICRT experienced the lowest propaga-
tion latency on average. To transmit a transaction through a
certain communication channel, conventional AXI intercon-
nects have to pass the transaction through the entire FIFO
queue of this channel. The improvements benefited from
employing RAQs in AXI-ICRT , enabling random accesses
of transactions and providing shorter paths for the transac-
tions. However, with increased workload intensity, the FIFO
queues in the conventional AXI interconnects behave like
a “pipeline”, mitigating the drawbacks of the transmission
efficiency.
Obs 4. AXI-ICRT always achieved the best real-time perfor-
mance when the system was scaled with different numbers
of transaction generators.

This observation is summarized from two perspectives:
(i) transactions in AXI-ICRT always had the shortest block-
ing time. Such benefit was achieved by deploying RAQs
in AXI-ICRT (detailed in Sec. 5.1), which enabled prioriti-
zation of the transactions, avoiding a high-priority trans-
action being blocked by low-priority transactions. (ii) AXI-
ICRT always had the least experimental variance. This is
because AXI-ICRT deploys the real-time scheduler (TCU) at
the hardware level (see Sec. 5.3), ensuring transactions are
managed in a time-predicable manner.

7.4 Case Study
We now use a case study to examine the benefits of applying
AXI-ICRT in a heterogeneous SoC.
System configurations. We integrated the different AXI
interconnects in the SoC (shown in Fig. 1). For each SoC,
we executed real-world task sets using the core subsystem
and DNN inference tasks using DNN HAs.
Task sets. We introduced three sets of real-world tasks for
the core subsystem (20 tasks in each set):

•Safety tasks, selected from the Renesas automotive use
case database [38], e.g., CRC, RSA32, etc.

•Function tasks, selected from the EEMBC bench-
mark [39], e.g., Fourier transform, speed calculation, etc.

•Synthetic workloads, selected from the EEMBC bench-
mark, which could be optionally added into the system to
tune overall system utilization.

We employed a hybrid-measurement approach to obtain
WCETs for all tasks [40]. The raw data processed by the
40 tasks was randomly generated off-chip and sent to the
evaluated systems via two Ethernet controllers (1 Gbps).
The results were sent back via a FlexRay controller (10
Mbps). Each task had a defined period and implicit dead-
line, with overall system utilization approximately 40%.
Note, in practical systems, the execution time of a task is
affected by diverse factors (e.g., cache miss rate); hence,
adding synthetic workloads to a system only gives it a target
utilization.
DNN inference tasks. We used two groups of DNN infer-
ence tasks for the DNN HAs, which were built on LeNet-
5 [41] and AlexNet [42] architectures. Each group contained
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Fig. 12. Synthetic workloads: average propagation and blocking latency (unit:µs). The error bar indicates the worst case in 1, 000 experiments.
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Fig. 13. Case study: success ratios of different systems (x-axis: target utilization; y-axis: success ratio).
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Fig. 14. Case study: average throughput of DNN HAs. The results are
normalized by AXI-TD in each experimental group.

three tasks, which were trained using MNIST, EMNIST and
CIFAR-10 training datasets. The testing datasets for task
inferences were stored in off-chip DRAMs.
Experimental setup. We introduced three groups of exper-
imental setups, which activated 4/8/16 processors in the
core subsystem and executed the task sets and synthetic
workloads. In each experimental group, we executed each
examined system 1,000 times under varying target utiliza-
tion from 40% to 100% (with an interval of 5%). Each
execution lasted 150 seconds, which guaranteed that all
tasks executed at least 300 times. At the same time, we also
controlled the DNN HAs to continually fetch test datasets
from DRAMs and execute the inference tasks in a round-
robin manner. For fair comparison, we also ensured the
data input to the examined systems was identical in each
execution. We evaluated the examined systems using success
ratio for the core subsystem and throughput for the DNN
HAs. The success ratio recorded the percentage of trials that
executed successfully (i.e., without deadline misses of any
safety or function software tasks) under a specified target
utilization. This metric reveals system-level throughput be-
cause, as shown from synthetic benchmarks in section 7.3, as
the success ratio increases more transactions can be correctly
processed. This serves as an effective proxy for the system’s
overall predictability. The throughput evaluated the average
execution times of the DNN tasks in each examined system.
Obs 5. With the increase in SoC complexity, interconnect

became the dominant factor in the real-time performance.
This observation can be explained by the experimen-

tal results in Fig. 13. In the system with 4 processors
(Fig. 13(a)), the success ratios of the examined systems were
similar under each target utilization. In 8-core and 16-core
systems (Fig. 13(b) and 13(c)), with more Primaries and
Secondaries involved, the success ratios of the examined
systems dropped significantly. As would be expected, this
indicates that the interconnect dominated the SoC’s real-
time performance when the SoC’s complexity increased.
Obs 6. In complex SoCs, applying AXI-ICRT is beneficial.

As shown in Figs. 13(b) and 13(c), with the same
configuration, the system with AXI-ICRT always achieved
higher success ratios compared to the baseline systems.
Such improvements were acquired by: (i) introducing the
new micro-architecture of AXI-ICRT (see Sec. 5), enabling
prioritization and real-time scheduling of transactions. (ii)
deploying the interface selection algorithm (see Sec. 6),
further optimizing the real-time performance of AXI-ICRT .
Obs 7. AXI-ICRT improved the Primaries’ throughput, al-
though with a slight increase in SoC complexity.

This observation is shown in Fig. 14. In 4-core systems,
DNN HAs executing in the system with AXI-ICRT out-
performed all other examined systems. In 8-core and 16-
core systems, AXI-ICRT ensured higher throughput of the
DNN HAs compared to AXI-TD, AXI-RB, and AXI-HC, but
was outperformed by AXI-DC. This observation aligns with
experimental results using synthetic workloads, i.e., Obs. 3.

8 CONCLUSION

This paper proposes a real-time interconnect (AXI-ICRT)
for multi-/many-core heterogeneous SoCs. AXI-ICRT intro-
duces a novel micro-architecture, enabling random accesses
of buffered transactions and prioritizing transactions using
a dedicated two-layer compositional scheduler. To realize
efficient compositional scheduling, we propose a pseudo-
polynomial time algorithm to solve the problem of selecting
both a period and capacity for components consisting of
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sporadic task systems. As shown in the evaluation, AXI-
ICRT outperforms the conventional interconnects, and the
AXI-ICRT design is resource-efficient.
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