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Abstract—In order to mitigate the pessimism of parameter
estimation in real-time systems, mixed-criticality (MC) scheduling
has been proposed and studied. In light of the first MC scheduling
work focusing on multiple estimations on the worst-case execution
times (WCETs), a few following works also have extended this
approach to other dimensions, such as period, relative deadlines,
and processor speeds. Nonetheless, in most existing work on
MC scheduling, a flat-structured scheduling approach, whereas
compositional real-time systems with hierarchical scheduling are
of great interest, especially for large-scale real-time systems.
In this work, we aim to extend the fundamental ideas and
frameworks of MC scheduling to another dimension, namely
the budget estimation. To further illustrate this approach, we
form up a specific scheduling problem in the context of a single
virtual processor characterizing by the periodic resource model
and propose a virtual-deadline-based algorithm to solve it.

Index Terms—real-time systems, mixed-criticality scheduling,
hierarchical scheduling, periodic resource model

I. INTRODUCTION

Real-time systems design is often aiming for providing
guarantees for meeting deadlines in all possible scenarios.
As a result, significant pessimism usually exists in real-time
scheduling analysis and design. The system parameters, e.g.,
the needed execution time for a piece of code, are provisioned
as upper bounds, which are often not tight, on the worst case.
Consequently, while the system design and certification need
to follow these pessimistic provisioned system parameters,
computing resources might be significantly underutilized in
practice due to the potentially huge gap between the general
scenario during runtime and the worst-case provision used for
analysis, design, and certification. One approach to mitigate
such pessimism is mixed-criticality (MC) scheduling [40].
Under MC scheduling, tasks are grouped to two distinct
criticality level—HI (stands for high criticality) and LO (stands
for low criticality), and each system parameter might have
two provisions—a more pessimistic one that absolutely upper
bounds the worst case scenario, and a less pessimistic one that
covers a dominant majority of scenarios in practice (e.g., take
the observed worst case in measurement-based experiments).
An MC scheduler is designed based on the given criticality
levels and system provisions, and needs to guarantee that the
deadlines of all tasks (i.e., both HI- and LO-tasks) are met in
“normal” scenarios in common practice while the deadlines

of all HI-tasks are still met even if any pathological extreme
cases do happen.

Although MC scheduling has received much attention in
the real-time systems research community, most existing work
has been directed to a flat-structured scheduling approach,
i.e., a single central scheduler is used to schedule all tasks
in the entire system. However, as computing systems, even
embedded ones, become increasingly complicated and highly
integrated, a single system may need to be designed, analyzed,
implemented, and certified as several isolated components,
with each component having the “illusion” of executing on
a dedicated virtual platform [14]. In a compositional real-
time system, the scheduling follows a hierarchical approach.
An upper-level scheduler distributes the computing capacity
of the physical computing platform to each component and
determines the characteristics of the virtual platform in each
component. Then, each component has a lower-level scheduler
to schedule the tasks in that component upon that virtual
platform.

In order to analyze and certify each component inde-
pendently, interfaces are needed to characterize the supply
provided by a virtual processor (VP), i.e., available process-
ing time units from the physical processor to support task
execution. For example, the periodic resource model is such a
fundamental interface, which characterizes a VP by a pair of
parameters (Π,Θ), with the interpretation that at least Θ time
units of processor time is guaranteed to the supported task set
every Π time units.

As Θ indicates the minimum budget for any resource period,
it may be necessarily estimated with significant pessimism,
just like what happens to the worst-case execution time
(WCET) estimation. As a result, the resource may be greatly
wasted in the actual runtime.
Contributions. In this paper, we extend the work of mixed-
criticality scheduling to the resource supply estimation in the
context of compositional real-time systems. By provisioning
resource budget with multiple estimations, we show that fun-
damental ideas and framework of mixed-criticality scheduling
can be applied in another dimension of scheduling problems
that have not been considered before. To further illustrate this
approach, we form up a specific scheduling problem in the
context of a single virtual processor characterizing by the



periodic resource model and propose a virtual-deadline-based
algorithm to solve it.
Organization. In the rest of this paper, we describe our system
model and review a few direct background results (Sec. II),
describe our proposed scheduling algorithm (Sec. III), present
a corresponding schedulability test (Sec. IV), discuss related
work (Sec. V), and conclude (Sec. VI).

II. SYSTEM MODEL AND BACKGROUND

In this paper, we consider the preemptive scheduling of a set
of tasks of two criticalities on a single VP. Also, we assume
time is discrete in this paper, i.e., all parameters representing
amount of time units are assumed to be integers and any
scheduling event and decision must happen at an integer time
instant.
Resource model. Similar to the periodic resource model [35],
we assume this single virtual processor provides certain avail-
able processing time units to the task set every Π time units,
and Π is called the resource period of this virtual processor.
The amount of available time units within every resource
period is called the budget of this virtual processor. In the
original periodic resource model, a single budget parameter
Θ is assumed, indicating the minimum amount of budget in
any resource period. In contrast, we apply two estimations
to the budget: a critical budget ΘC indicating an absolute
lower bound on budget in any resource period (e.g., derived
by the most pessimistic analysis), and a nominal budget
ΘN indicating a less pessimistic lower bound on budget in
any resource period (e.g., based on observations in empirical
experiments). That is, ΘC ≤ ΘN .
Task model. On this virtual processor, a set of sporadic tasks
T is supposed to be scheduled. Each task τi ∈ T releases
a sequences of jobs with a minimum separation of Ti time
units, where Ti is called the period of τi. Any job of τi may
be executed for up to Ci time units to complete, i.e., Ci is the
WCET of τi. In this paper, we also assume that the deadlines
are implicit, i.e., every task τi has a relative deadline of Ti time
units indicating that every job of τi has an absolute deadline
at Ti time units after its release. Furthermore, the utilization of
task τi is defined by ui = Ci/Ti. Each task must be specified
as either a high-critical (HI) or low-critical (LO) task. We
also denote the set of HI-tasks and LO-tasks by THI and TLO,
respectively. That is, THI∪TLO = T and THI∩TLO = ∅. We also
denote the total utilization of all tasks, HI-task, and LO-tasks,
respectively, as follows:

U =
∑
τi∈T

ui, UHI =
∑
τi∈THI

ui, ULO =
∑

τi∈TLO

ui.

We also call a job of a HI-task a HI-job for short and call a
job of a LO-task a LO-job for short, respectively. Also, a job
is pending if it is released and has not completed.
Schedulability criteria. Note that, in this paper, two es-
timations on the budget (ΘC and ΘN ) for every resource
period Π have been applied, while the actual budget during
runtime is unknown for the pre-runtime analysis. Therefore,
the schedulability of the system is defined as

• the deadlines of all (HI- and LO-) tasks must be met, if at
least ΘN available time units are provided as the budget
during every resource period;

• the deadlines of all HI-tasks must be met, if less than ΘN

(but still at least ΘC) available time units are provided
during some resource period.

In the rest of this section, we review algorithm EDF-VD
and the periodic resource model in more detail.

A. Algorithm EDF-VD

The scheduling algorithm EDF-VD was first proposed for
scheduling implicit-deadline mixed-criticality tasks with mul-
tiple execution time estimations on a dedicated uniproces-
sor [5, 6].

Under EDF-VD, each HI-job is assigned a virtual deadline
earlier than its actual deadline. Specifically, a scaling factor
0 < x ≤ 1.0 is applied system-widely to all HI-tasks so that
each HI-task τi has a relative deadline T ′i = x · Ti. On the
other hand, every LO-job is assigned a virtual deadline equal
to its actual deadline.

During runtime, EDF-VD starts with scheduling all jobs
with respect to their virtual deadlines — the earlier the virtual
deadline, the higher the priority. If all HI-jobs complete their
execution by their less pessimistic execution time estimation,
all virtual deadlines and therefore all actual deadlines are
guaranteed to be met. If any HI-job executes over its less
pessimistic execution time estimation without signaling com-
pletion, all LO-jobs are dropped by EDF-VD immediately and
afterwards, all HI-jobs are scheduled by EDF with respect to
their actual deadlines.

The setting of the scaling factor x and utilization-based
schedulability tests have been investigated in [5, 6], but we
omit the details here due to the difference of system model.

B. Periodic Resource Model

In the periodic resource model [35], a VP is characterized by
two parameters (Π,Θ), which indicate that this VP supplies Θ
units of processor time every Π time units, where 0 < Θ ≤ Π.

Note that, a VP corresponding to a dedicated physical
processor that is always available is a special case in the
periodic resource model where Θ = Π.

The supply bound function (SBF) of the VP, denoted sbf(t),
indicates the minimum processor time this VP can supply
during any time interval of length t. Shin and Lee [35] have
shown that sbf(t) can be calculated by

sbf(t) =

{
0 if t′ < 0⌊
t′

Π

⌋
·Θ + ε if t′ ≥ 0

where
t′ = t− (Π−Θ),

ε = max

(
t′ −Π

⌊
t′

Π

⌋
− (Π−Θ), 0

)
.

This definition reflects the worst-case scenario illustrated in
Figure 1. In [35], a linear supply bound function, which is a
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Fig. 1: Worst-case supply of a periodic resource.
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Fig. 2: An illustration for functions sbf(t) and lsbf(t).

lower-bound on the corresponding supply bound function, is
also defined by

lsbf(t) =
Θ

Π
(t− 2(Π−Θ)).

That is, ∀t, lsbf(t) ≤ sbf(t). Fig. 2 illustrates the functions
sbf(t) and lsbf(t). On the other hand, under EDF scheduling,
the demand bound function of a task τi is calculated by

dbf(t, τi) =

⌊
t

Ti

⌋
· Ci,

and the demand bound function for a task set T is

dbf(t, T ) =
∑
τi∈T

dbf(t, τi).

Linear demand bound functions, which are an upper-bound on
the corresponding demand bound functions, are also defined
by

ldbf(t, τi) = ui · t, and

ldbf(t, T ) =

(∑
τi∈T

ui

)
· t.

That is, ∀t and T , dbf(t, T ) ≤ ldbf(t, T ). Thus, ldbf(t, T ) ≤
lsbf(t) implies dbf(t, T ) ≤ sbf(t). The following lemma and
theorem have been shown in [35], and Theorem 1 below in
fact provides a utilization-based schedulability test.

Lemma 1. (Lemma 5 in [35]) Task set T is schedulable by
EDF on a VP (Π,Θ) if ldbf(Tmin, T ) ≤ lsbf(Tmin) where
Tmin = minτi∈T Ti.

Theorem 1. (Theorem 7 in [35]) Task set T is schedulable by
EDF on a VP (Π,Θ) if

U ≤ Θ

Π

(
1− 2(Π−Θ)

Tmin

)
,

where U =
∑
τi∈T ui and Tmin = minτi∈T Ti.

III. ALGORITHM EDF-VDVP

In this section, we present our scheduling algorithm EDF-
VDVP (stands for “EDF with virtual deadlines and varying
processor supply”). By Theorem 1, we first require the follow-
ing to hold as the basis of our utilization-based schedulability
test:

U ≤ βN and UHI ≤ βC (1)

where

βN =
ΘN

Π

(
1− 2(Π−ΘN )

Tmin

)
> 0, (2)

βC =
ΘC

Π

(
1− 2(Π−ΘC)

Tmin
HI

)
> 0, (3)

Tmin = min
τi∈T

Ti,

Tmin
HI = min

τi∈THI
Ti.

Note that, we also require βN > 0 and βC > 0. Intuitively,
it means that the maximum period of no available budget
for the VP must be shorter than the shortest period of the
supplied tasks; otherwise, there is no way to provide worst-
case guarantees to the task with the shortest period.

Similar to many mixed-criticality scheduling algorithms,
EDF-VDVP also has two modes to cope with the two es-
timations. In many prior work on multiple estimations on
execution time, the mode switch point is rather straightforward
— when a job has executed for its less pessimistic execution
time without signaling completion. In our context, the less
pessimistic budget ΘN is the greater one, and therefore the
mode switch cannot be in the same manner as before.
Mode switch. Under EDF-VDVP, there are two mode, namely
the nominal mode and critical mode. The system always starts
with the nominal mode. At every time instant, the scheduler
keeps track of that 1) b time units budget have already received
during the current resource period, and 2) there are still p time
units until the end of current resource period. The mode switch
must happen when a time unit has not supply available budget,
i.e., for some time instant t∗, the time unit [t∗, t∗ + 1) is not
available to provide any execution for tasks in T . If at time
t∗ + 1, it becomes true that b + p < ΘN , then EDF-VDVP
is notice a mode switch to the critical mode. We define t∗

(the time instant followed by an unavailable time unit) as the
mode-switch time instant. Note that, the scheduler detecting
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Fig. 3: An illustration for the mode-switch time instant t∗.

the mode switch at time instant t∗ or t∗ + 1 does not affect
any scheduling decision as [t∗, t∗ + 1) is an unavailable time
unit anyway. Fig. 3 illustrates the mode switch time instant t∗.

Scheduling with virtual deadlines. Besides the differences in
the assumed system model, EDF-VDVP schedules tasks in the
same virtual-deadline-based manner as EDF-VD does. Every
job of HI-task τi has a virtual deadline T ′i = x · Ti time units
after its release, where x is the system-wide virtual deadline
scaling factor such that 0 < x ≤ 1.0. In contrast, the virtual
deadlines of LO-tasks is the same as their actual deadlines.
In the runtime, the EDF-VDVP always begins with nominal
mode where the pending job with the earliest virtual deadline
is scheduled for execution whenever available processing time
is allocated for the VP. When a mode switch to the critical
mode is triggered, EDF-VDVP discards any pending and
upcoming LO-jobs, and afterwards, schedules the pending
HI-job with earliest actual deadline for execution whenever
available processing time is allocated for the VP.
Calculating the scaling factor x. For a given task set T and
given parameters Π, ΘN , the scaling fact x is calculated by

x =
UHI

βN − ULO
. (4)

By (1) and (2), UHI + ULO = U ≤ βN , i.e., UHI ≤ βN − ULO.
Therefore, it is clear that 0 < x ≤ 1.0.

IV. SCHEDULABILITY TEST

In this section, we present a sufficient schedulability test
for EDF-VDVP. The schedulability test needs to validate the
guarantees in the two modes corresponding to the nominal and
critical budgets, respectively, so that the schedulability criteria
defined in Sec. II are met.

The following lemma shows that with x being set by (4),
the deadlines of all (HI- and LO-) tasks are met in the nominal
mode, since the virtual deadline of any job is no later than its
actual deadline.

Lemma 2. All virtual deadlines of HI- and LO-tasks are met in
the nominal mode if

x ≥ UHI

βN − ULO
.

Proof. In the nominal mode, treating the virtual deadlines
as the actual deadlines, every HI-task τi can be viewed as
a sporadic task τ ′i with a short period (and shorter relative
deadline) T ′i = x · Ti. Therefore,

u′i =
Ci
T ′i

=
Ci
x · Ti

=
ui
x
.

On the other hand, the period, deadline, and therefore uti-
lization of every LO-task remain unchanged. Furthermore, the
budget supply in the nominal mode follows the periodic re-
source model with parameters (Π,ΘN ). Thus, by Theorem 1,
the virtual deadlines of all tasks are met if∑

τi∈TLO

ui +
∑
τi∈THI

ui
x
≤ βN

⇔ ULO +
UHI

x
≤ βN

⇔ x ≥ UHI

βN − ULO
.

The last equivalence holds because (1) and (2) hold and the
lemma follows.

Furthermore, the following lemma provides a sufficient
condition for all actual deadlines of HI-tasks being met in the
critical mode.

Lemma 3. All deadlines of HI-tasks in the critical mode will
be met if

x ≤ 1− UHI

βC
.

Proof. At the mode switch point from the nominal to critical
mode, a job from any task τi ∈ THI must either be completed or
have its virtual deadline after the mode switch point, because
by Lemma 2, all virtual deadlines of HI-jobs are met in the
nominal mode. That is, if not completed yet, a job of a HI-task
τi must have an actual deadline at least (1− x)Ti time units
after this mode-switch point. Afterwards, any job from any
task τi ∈ τHI has at least Ti > (1−x)Ti (as 0 < x < 1.0) time
units from their releases in the HI-mode to their corresponding
deadlines.

That is, in the critical mode, every HI-task τi can be viewed
as a sporadic task τ ′i with a short period (and shorter relative
deadline) T ′i = (1− x) · Ti. Therefore,

u′i =
Ci
T ′i

=
Ci

(1− x) · Ti
=

ui
1− x

.

Furthermore, the budget supply in the critical mode follows
the periodic resource model with parameters (Π,ΘC). Thus,
by Theorem 1, the actual deadlines of all HI-tasks are met in
the critical mode if∑

τi∈THI

u′i =
UHI

1− x
≤ βC .



Because 0 < x ≤ 1.0 and βC > 0 as noted at the beginning
of Sec. III, the lemma follows.

By Lemmas 2 and 3, the following theorem holds and serves
as a sufficient schedulability test.

Theorem 2. A mixed-criticality task set T is schedulable on
a VP with resource period Π, nominal budget ΘN , and critical
budget ΘC , if (1), (2), and (3) hold, and

UHI

βC
+

UHI

βN − ULO
≤ 1. (5)

V. RELATED WORK

In the last decade, multicore processors have become ubiq-
uitous and there has been extensive research work on how to
efficiently utilize these parallel machines with different types
of real-time tasks, including mixed criticality real-time task
scheduling and compositional real-time task scheduling.

The first work on the verification of a Mixed Criticality
System was published by Vestal (of Honeywell Aerospace)
in 2007 [41]. It used an extension of standard fixed priority
(FP) real-time scheduling theory and proposed a restrictive
work-flow model, focused on a single processor and made
use of Response Time Analysis [3]. It showed that neither
rate monotonic [30] nor deadline monotonic [29] priority
assignment is optimal for MCS; however Audsleys optimal
priority assignment algorithm [4] was found to be applicable.
This paper was followed by two publications in 2008 by
Baruah and Vestal [8], and Huber et al. [26].

Beside the basic mixed criticality task model, a bunch of
techniques addressing mixed criticality systems in different
scenarios are proposed: letting any LO-criticality job that
has started, run to completion [9]; reducing the priorities of
the LO-criticality tasks [7], or similar with EDF schedul-
ing [25]; increasing the periods and deadlines of LO-criticality
jobs [20] [27] [34] [37] [38] [39], called task stretching, the
elastic task model or multi-rate; decreasing the computation
times of some or all of the LO-criticality tasks [11], perhaps
by utilising an imprecise mixed-criticality (IMC) model [24]
or budget control [22]; moving some LO-criticality tasks to a
different processor that has not experienced a criticality mode
change [42]; improving resource utilization while guaranteeing
safe execution of critical applications [21, 23, 28].

There also has been extensive research on compositional
real-time scheduling. Insik Shin and Insup Lee present a
formal description of compositional real-time scheduling prob-
lems in [35, 36]. They identify issues that need be addressed
by solutions and provide their framework for the solutions,
which is based on the periodic interface. Following this work,
[16] introduces the Explicit Deadline Periodic (EDP) resource
model, and present compositional analysis techniques under
EDF and DM. It shows that these techniques are bandwidth
optimal, in that they do not incur any bandwidth overhead in
abstraction or composition. ARINC specification 653-2 [18]

describes the interface between application software and un-
derlying middle-ware in a distributed real-time avionics sys-
tem. Authors develop compositional techniques for automated
scheduling of partitions and processes in such systems. This
work is followed by [12]. It proposes a compositional approach
to formal specification and schedulability analysis of real-
time applications running under a Time Division Multiplexing
(TDM) global scheduler and preemptive Fixed Priority (FP)
local schedulers, according to the ARINC-653 standard.

In addition to the traditional compositional real-time task
scheduling, several novel scheduling algorithms[19][16][31]
are proposed to schedule real-time task systems under different
system architectures [43][33][15][10][44][32][13][2]. Corre-
spondingly, to validate the schedulability of each real-time
task system, schedulability analysis frameworks [16][17][1]
are proposed for analyzing real-time tasks in different real-
time applications.

VI. CONCLUSION

In this paper, we have made efforts to extend the funda-
mental ideas and frameworks of MC scheduling to a new
dimension in the context of compositional real-time systems.
We proposed to use multiple parameters to provision the VP
supply. To further illustrate this approach, we formed up a
specific scheduling problem in the context of a single virtual
processor characterizing by the periodic resource model. We
developed a virtual-deadline-based algorithm to solve it and
presented a sufficient utilization-based schedulability test.
Future Work. The work in this paper can be further ex-
tended in several ways. First, in addition to implicit-deadline
tasks, constrained- and arbitrary-deadline may be considered.
Second, we plan to incorporate multiple budget estimations
with the classic multiple WCET estimations together in MC
scheduling. Also, in addition to the resource budget, multiple
estimations on the resource period are another possible di-
mension and need further investigation. Finally, multiprocessor
extension may need more efforts due to the complicated supply
analysis induced by parallelism but is definitely an interesting
topic.
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