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Abstract 
Graph coloring is an assignment of colors to the vertices of 
a graph such that no two adjacent vertices get the same 
color. It is a key building block in many applications. Find-
ing a coloring with a minimal number of colors is often only 
part of the problem. In addition, the solution also needs to 
be computed quickly. Several parallel implementations ex-
ist, but they may suffer from low parallelism depending on 
the input graph. We present an approach that increases the 
parallelism without affecting the coloring quality. On 18 
test graphs, our technique yields an average of 3.4 times 
more parallelism. Our CUDA implementation running on a 
Titan V is 2.9 times faster on average and uses as few or 
fewer colors as the best GPU codes from the literature. 

CCS Concepts 
• Computing methodologies → Massively parallel algo-
rithms 

Keywords 
Graph coloring, shortcuts, parallelism, GPU computing 

1 Introduction 
Graph coloring refers to the assignment of colors (i.e., 
unique symbols) to the vertices of a graph such that no ad-
jacent vertices have the same color. The graph coloring 
problem is the problem of coloring a graph using as few 
colors as possible. More formally, a vertex coloring of an 

undirected graph G = (V, E) is a mapping C from vertices to 
colors such that C(i) ≠ C(j) for every edge (i, j) ∈ E. 

Graph coloring is a building block in many applications 
such as clustering, data mining, image capturing, image 
segmentation, networking, resource allocation, process 
scheduling, optimizing the calculation of sparse Jacobian 
matrices [6], LU factorization [25], and parallel Gauss-
Seidel algorithms for solving non-linear equations [18]. 

Graph coloring is NP-hard, that is, there is no known 
polynomial time algorithm that can solve it optimally [13]. 
However, several heuristic algorithms exist to color a graph 
using few colors. These algorithms produce a valid color-
ing, i.e., guarantee that no adjacent vertices have the same 
color, but they may require more colors than the optimal 
algorithm, i.e., do not guarantee optimality. 

In general, these heuristics provide different tradeoffs 
between the coloring quality and the execution time. Typi-
cally, faster algorithms tend to require more colors. The 
problem we are tackling is how to deliver a good coloring 
quality at high speed. Our solution is to increase the paral-
lelism without loss in quality. 

One well-known heuristic is the greedy algorithm. It as-
signs a random priority to each vertex. Then it repeatedly 
selects the uncolored vertex that has the highest priority 
and colors it with the best available color, i.e., the first avail-
able color that is not already assigned to one of the vertex’s 
neighbors. In graph coloring, the colors are typically or-
dered (first color, second color, etc.) and the first color is 
the “best” (most preferred) color. 

Many parallel graph coloring algorithms [2][5][17][27] 
follow the Jones-Plassmann approach [19], i.e., they are 
based on the observation that any independent set of verti-
ces can be colored in parallel. The strategy used for the col-
oring depends on the application. If fewer colors are desir-
able, the algorithm needs to emphasize the coloring quality 
at the cost of performance. If the application is runtime sen-
sitive, the number of colors might be compromised in favor 
of a higher speed. Combining the Jones-Plassmann ap-
proach with different priority heuristics allows to select dif-
ferent points in this quality versus speed tradeoff space. 
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Several priority heuristics have been proposed for deter-
mining the order in which to color the vertices. There are 
six prominent ordering heuristics for graph coloring: 1) 
first-fit ordering (FF), where the vertices are colored in the 
order in which they appear in the vertex set, 2) random or-
dering (R), where the vertices are colored in random order, 
3) largest-degree-first ordering (LDF), where the vertices 
with larger degrees are colored first, 4) smallest-degree-last 
ordering (SDL), where the vertices with the smallest degree 
are successively removed from the graph, the modified 
graph is colored using the LDF heuristic, and finally the re-
moved vertices are re-inserted and colored, 5) saturation-
degree ordering (SD), where the vertices whose colored 
neighbors have the largest number of unique colors are col-
ored first (using the vertex degree as a tie breaker), and 6) 
incidence-degree ordering (ID), where the vertices with the 
largest number of colored neighbors are colored first irre-
spective of the number of unique colors (using the vertex 
degree as a tie breaker). Where needed, these heuristics in-
clude a tie breaker, which is often the vertex identifier. In 
general, LDF tends to produce better colorings than FF and 
R at the same performance level, SDL and SD tend to pro-
duce better colorings than LDF but with a large additional 
cost in runtime, and ID tends to produce similar coloring 
quality as LDF but is slower [17]. 

Our algorithm is based on the Jones-Plassmann (JP) ap-
proach with the largest-degree-first (LDF) heuristic. We se-
lected JP-LDF as it tends to produce good colorings while 
being quite fast [17]. It colors vertices with higher degrees 
first, so vertices with a lower degree must wait before the 
algorithm can assign a color to them. To minimize this 
waiting, we have developed “shortcuts” that, under certain 
conditions, enable us to already color lower-degree vertices 
before their higher-degree neighbors have been colored. 
Importantly, these shortcuts are guaranteed to yield the 
same final coloring as the JP-LDF algorithm without the 
shortcuts. However, the shortcuts increase the amount of 
parallelism as more vertices can be colored simultaneously, 
thus boosting performance. 
This paper makes the following main contributions. 

• It presents algorithmic optimizations to increase the 
amount of parallelism in graph coloring without affect-
ing the coloring quality. 

• It describes techniques to efficiently implement these 
algorithmic optimizations. 

• It demonstrates that our CUDA implementation is 
faster than prior CPU and GPU graph coloring codes 
on a variety of graphs. 

The CUDA source code of our implementation is available 
at https://cs.txstate.edu/~burtscher/research/ECL-GC/. 

The rest of the paper is organized as follows. Section 2 
provides background information. Section 3 explains the 
shortcuts and the optimizations to implement them effi-
ciently. Section 4 summarizes related work. Section 5 de-
scribes the methodology. Section 6 presents and analyzes 
the results. Section 7 concludes the paper. 

2 Background 

Throughout this paper, we use the color order shown in 
Figure 1a, i.e., the first color (red) must be chosen whenever 
possible. If that is not possible, the second color (blue) must 
be chosen if possible, and so on. 

We use the graph in Figure 1b with 7 vertices and 16 
edges for illustration. For simplicity, the vertices are labeled 
in LDF order: vertices A, B, C, D, and E have degree 5, ver-
tex F has degree 4, and vertex G has degree 3. We use al-
phabetic ordering to break ties between vertices of the same 
degree, i.e., letters that appear earlier in the alphabet win 
the tie. The resulting ordering imposes a direction upon 
each edge (from the higher-priority vertex that must be col-
ored first to the lower-priority neighbor), which turns the 
undirected graph into a directed acyclic graph (DAG). The 
DAG is shown in Figure 1c. 

Figure 1d displays a possible coloring with four colors. 
This is the result that the greedy serial algorithm produces 
when processing the vertices alphabetically. It first colors 
A, which has no colored neighbors, so A gets red. Then B is 
colored, which is adjacent to A and, therefore, cannot be 
red. Hence, B is assigned blue. Vertex C can be red again 
and D must take orange as it has red and blue neighbors. E 
must be purple as it has red, blue, and orange neighbors. 
Finally, F can be blue and G can be orange. Note that the 
serial algorithm requires as many steps as there are verti-
ces. Each step must traverse all edges of the current vertex, 
resulting in the total work of O(|V| + |E|), where |V| is the 
number of vertices and |E| the number of edges in the graph. 
Any parallel algorithm that adheres to the same vertex pri-
ority must produce the same coloring, including the JP al-
gorithm and our algorithm, which we named “ECL-GC”. 

 

 

 
             (b)                            (c)                            (d) 

Figure 1: Assumed color order (a), sample graph (b), 
LDF-imposed DAG (c), and greedy coloring (d) 

First       Second       Third       Fourth       Fifth       Sixth

B

C

F

D

G

A

E

B

C

F

D

G

A

E

B

C

F

D

G

A

E

(a) 



  
 

 

A DAG generally only specifies a partial order, in this 
case the order in which to color the vertices. The parallel-
ism of the JP algorithm originates from this partial order. 
The depth of the DAG determines the number of parallel 
steps, and the width at a given level determines the amount 
of parallelism. Figure 2 illustrates the steps of the JP-LDF 
algorithm on the sample graph. 

 

 
             (a)                            (b)                            (c) 

 
              (d)                           (e)                            (f) 

Figure 2: Steps of the JP-LDF algorithm 

Figure 2a shows the initialization step, which computes 
the direction of each edge in parallel by comparing the de-
grees of the two vertices the edge connects (and invoking 
the tie breaker if needed). Vertex A can already be colored 
as it has no incoming edges. In each of the following pro-
cessing steps, every uncolored vertex checks, in parallel, 
whether all its higher-priority neighbors (incoming edges) 
have been colored. We visualize this with light edges. Once 
a vertex has no incoming dark edges, it can be colored. 

In the first processing step (Figure 2b), vertex B has no 
incoming dark edges. It gets blue as it has a neighbor that 
already uses red. In the second step (Figure 2c), vertex C 
has no incoming dark edges, so it is colored with the best 
available color, which is red. In the third step (Figure 2d), 
vertices D and G find that all their higher-priority neigh-
bors have been colored. So, they are colored concurrently 
with the best available color, which is orange in both cases. 
In the fourth step (Figure 2e), only vertex E is ready. It must 
be colored purple as all “better” colors are taken by its 
neighbors. In the fifth and final processing step (Figure 2f), 
vertex F is colored blue. Since all vertices are now colored, 
the JP-LDF algorithm terminates. 

3 Shortcut Approach 

There is little parallelism in the above example. Only one 
step colors more than one vertex. Yet, additional non-spec-
ulative parallelism may exist. To see where it resides, 

consider the partially colored subgraph in Figure 3a. We re-
use the color order from Figure 1a in this section. 

 

                              
            (a)                         (b)                         (c) 

Figure 3: Examples of Shortcut 1 

Vertices Y and Z cannot be colored because they both 
have a higher-priority neighbor that has not yet been col-
ored, as indicated by the incoming dark edge. It appears 
that vertex Q also cannot be colored for the same reason. 
However, it can be colored red (the best color) without 
waiting for Y or Z. This is safe because Y and Z are guaran-
teed not to use red as they both have a neighbor that is al-
ready red. Figure 3b depicts a similar scenario but vertex X 
is now blue. Applying the same reasoning, we conclude 
that it is safe to color Q blue as well. However, we want to 
give each vertex the same color as the serial and JP-LDF 
algorithms. Unfortunately, we do not yet know whether it 
is possible to color vertex Q red and must, therefore, wait. 
In the modified case depicted in Figure 3c, we do not have 
to wait because blue is the best possible color for Q, and we 
know that neither Y nor Z will be blue. Generalizing these 
observations leads to the first enhancement we propose, 
which we call a “shortcut” because it allows the coloring of 
vertices before it is their turn. 

Shortcut 1: A vertex can safely be colored with its best 
possible color as soon as its uncolored higher-priority 
neighbors are no longer considering that color. 

To be able to determine whether this is the case, we need 
to record, for each vertex, what colors it is still considering. 
We call them the “possible colors”. This information allows 
us to decide both the best available color for a vertex and 
whether a neighbor is still considering a specific color. We 
store this information in a bitmap, where each bit repre-
sents one color. A set bit (1) means the corresponding color 
is still possible, and a cleared bit (0) means it is not. The 
position of the bit reflects to which color it refers. 

A colored vertex has a single set bit in the bitmap indi-
cating the color of the vertex. Uncolored vertices have at 
least two set bits. Whenever a higher-priority vertex is col-
ored, the corresponding bit must be cleared in its lower-
priority neighbors since that color is no longer possible. 

The bitmaps are initialized with the k+1 bottom-most 
(least-significant) bits set, where k is the number of incom-
ing DAG edges. This is because, in the worst case, every 
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incoming edge of vertex v will be from a differently colored 
neighbor and use up the first k colors, leaving the k+1st 
color for vertex v. If the incoming edges end up not using 
all of the first k colors, because some neighbors of v either 
have the same color or use a color above k, then at least one 
of the first k colors will be available for v. Hence, it always 
suffices to only reserve the first k+1 colors for a vertex with 
k incoming edges [30]. 

This bitmap-based approach is utilized in other graph-
coloring codes, e.g., by Martínez-Bazan et al. [21]. Our ap-
proach employs the bitmaps for two additional tasks, 
namely to determine the best available color of a vertex (the 
lowest set bit in its bitmap) and whether any of the higher-
priority neighbors are still considering this color to deter-
mine if the first shortcut can be applied. Moreover, we use 
the bitmaps for a second type of shortcut. 

The second shortcut allows to ignore some higher-pri-
ority neighbors before they have been colored, which is 
tantamount to deleting an edge. This has two benefits. First, 
it enables us to remove one possible color from the bitmap 
as the number of incoming edges has decreased by one, 
which may make the first shortcut more effective (on other 
vertices). Second, it speeds up later processing steps as they 
no longer need to check that edge. Figure 4 illustrates the 
idea behind the second shortcut. 

 

 
Figure 4: Example of Shortcut 2 

In this example, vertex R cannot be colored because it is 
waiting for one higher-priority neighbor (the incoming 
dark edge). However, we know it will end up with either 
blue or purple as those are the only two possible colors re-
maining. Similarly, vertex S cannot be colored yet, and we 
know that its remaining possible colors are red, orange, and 
gray. Since there is no overlap between the possible colors 
of R and S, no matter which of its possible colors R eventu-
ally gets, it will not interfere with S. Hence, we can delete 
the edge from R to S. That lowers the number of incoming 
dark edges of vertex S to one, meaning it only needs to con-
sider two possible colors. Consequently, we can safely re-
move the worst color from its list of possible colors, which 
is gray. Generalizing this idea leads to the second shortcut. 

Shortcut 2: An edge from a higher-priority vertex u to 
vertex v can safely be removed as soon as there is no 
overlap between the possible colors of vertices u and v, 

which enables the removal of the worst color from the 
list of possible colors of vertex v. 

It is important to note that neither of the two shortcuts 
affect the ultimate coloring of the graph in any way. They 
just speed up the processing by increasing the parallelism. 

Figure 5 shows how the sample graph is colored using 
ECL-GC, our shortcut-based graph-coloring algorithm. In 
addition to the vertices and edges, the figure includes the 
bitmap of possible colors for each vertex. Note that the 
right-most bit represents the first color, the next bit to the 
left the second color, and so on. 

 

  
                    (a)                                            (b) 

  
                    (c)                                             (d) 

Figure 5: Steps of our ECL-GC algorithm 

The initialization phase of ECL-GC (Figure 5a) is identi-
cal to that of the JP-LDF algorithm (Figure 2a). Moreover, 
each vertex gets k+1 bits that are set to one, where k is the 
number of incoming DAG edges. All non-displayed leading 
bits are zero. In each of the following computation steps, all 
uncolored vertices are processed in parallel. Every vertex v 
visits all incoming edges/neighbors. There are three cases: 

1) If the neighbor has been colored, i.e., its bitmap only 
contains a single set bit, the edge is removed (grayed out) 
and one bit in the bitmap of v is cleared. If the bit corre-
sponding to the neighbor’s color is set, that bit must be 
cleared since this color is no longer a possible color for v. 
This is equivalent to the coloring performed by the JP algo-
rithm. However, if the bit corresponding to the neighbor’s 
color is not set, the highest set bit in the bitmap of v is 
cleared instead. This is not necessary in the JP algorithm. It 
is also not required in the ECL-GC algorithm, but it may 
help with the following two cases. 

2) If the neighbor has not yet been colored, i.e., its bit-
map contains multiple set bits, and none of the set bits in 
the neighbor’s bitmap overlap with the set bits of v, the 
edge is removed (grayed out) and the highest set bit in the 
bitmap of v is cleared. This implements Shortcut 2. 
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3) For all remaining uncolored neighbors, the union (bit-
wise OR) of their bitmaps is computed. If the currently best 
possible color of v is not in the union, all incoming edges 
are removed and v is colored with its best available color, 
i.e., all bits above the lowest set bit are cleared (since that 
many edges were removed). This implements Shortcut 1. 

In the first computation step of ECL-GC (Figure 5b), all 
vertices that are adjacent to A clear their rightmost bit. 
Note that this colors vertex B as it only has one set bit left. 
B gets blue because the set bit is in the second position. 

In the second computation step (Figure 5c), multiple 
events occur. All uncolored vertices that are adjacent to B 
clear their second bit. This colors vertex C red. Due to the 
parallel processing, the other vertices either see the old bit-
map of “11” or the new bitmap of “01” for C. Either bitmap 
suffices for vertices D and G, both of which have vertex C 
as the only remaining higher-priority neighbor, to conclude 
that they can be colored using Shortcut 1 since their best 
possible color (orange) is not considered by any of their in-
coming neighbors. Applying Shortcut 1 clears all the bits 
past the first set bit, indicated by an “x” in the figure. 
Shortcut 2 can also be applied in this computation step. The 
bitmap of E has no overlap with the (outdated or new) bit-
map of C, so the edge CE is deleted and the highest set bit 
of E is cleared. 

In the third computation step (Figure 5d), vertices E and 
F remove their third bit due to vertex D, which colors vertex 
E purple. Vertex F may not yet see this update of vertex E’s 
bitmap but can still conclude that its first set bit is not con-
tained in any of its remaining neighbors’ (vertices C and E) 
bitmaps, that is, it can be colored using Shortcut 1 and the 
higher bits are cleared. At this point, all vertices are colored, 
and the algorithm terminates. 

The resulting coloring is identical to that of the serial 
and JP-LDF algorithms. Moreover, it only takes the ECL-
GC algorithm three steps to color this graph compared to 
the five steps of the JP-LDF algorithm. 

3.1 Shortcut Derivation 

The two shortcuts were systematically derived from com-
binations of intersections between the possible colors 
among neighboring vertices. Assume set C(v) ⊂ ℕ contains 
the possible colors of vertex v. As shortcuts only apply to 
uncolored vertices and a vertex can only have a finite num-
ber of incoming DAG edges, 2 ≤ |C(v)| < ∞ holds. Further-
more, the complement C’(v) = ℕ\ C(v) must have cardinal-
ity |C’(v)| = ∞. If U(v) denotes the union of the possible col-
ors of all uncolored higher-priority neighbors of v, 2 ≤ |U(v)| 
< ∞ must also hold since there must be at least one such 
neighbor given that v is uncolored. Assuming vertex n 

represents one of those neighbors and that set B(v) ⊂ C(v) 
contains the best color of C(v), i.e., |B(v)| = 1, we end up with 
the 16 possibilities listed in Table 1. 

Table 1. Bitmap intersections and resulting actions 

 

 

Some intersections cannot yield an empty set due to the 
cardinality constraints outlined above. Others may yield an 
empty set, but the condition under which they do is not 
strong enough to derive a shortcut. The remaining four 
(red) cases are candidates. The 1st case from the top is 
Shortcut 2. The 5th case by itself is insufficient and only part 
of Shortcut 1. The 9th case is unnecessarily strong and al-
ready covered by the 13th case, which is Shortcut 1. We sim-
ilarly tried using the possible colors of the neighbors’ 
neighbors but could not find any additional shortcuts. 

3.2 ECL-GC Implementation & Optimization 

A direct implementation of the ECL-GC algorithm as de-
scribed above may be inefficient due to long bitmaps that 
must be processed for vertices with many higher-degree 
neighbors. This potential inefficiency is concerning since 
the goal of the shortcuts is to accelerate the computation. 

Graph coloring is typically performed on sparse graphs 
(e.g., dependence graphs) as there is little to be gained from 
coloring dense graphs that require close to |V| colors. We 
define a graph as sparse if it has O(|V|) edges, that is, |E| = 
c|V| where c is a small constant (the average degree) that is 
much smaller than |V|. In a sparse graph, most of the verti-
ces must have a low degree (much lower than |V|). Since a 
vertex of degree k can always be colored with one of the 
first k+1 colors, most vertices in sparse graphs can be col-
ored with just a few colors. This observation led us to treat 
high-degree and low-degree vertices separately. Specifi-
cally, we fully implement the shortcuts on the low-degree 
vertices and only approximate them on the high-degree 
vertices to avoid the processing of long bitmaps. 

meaning of empty intersection resulting action
C(v) ∩ C(n) poss. colors don't overlap with neighbor remove edge (Shortcut 2)
C'(v) ∩ C(n) there is overlap: C(n)  ⊂ C(v) continue
C(v) ∩ C'(n) there is overlap: C(v)  ⊂ C(n) continue
C'(v) ∩ C'(n) impossible
B(v) ∩ C(n) best color not considered by neighbor record info (for Shortcut 1)
B'(v) ∩ C(n) impossible
B(v) ∩ C'(n) best color is considered by neighbor continue
B'(v) ∩ C'(n) impossible
C(v) ∩ U(v) p. colors don't overlap with any neighbor use best color (Shortcut 1)
C'(v) ∩ U(v) there is overlap: U(v)  ⊂ C(v) continue
C(v) ∩ U'(v) there is overlap: C(v)  ⊂ U(v) continue
C'(v) ∩ U'(v) impossible
B(v) ∩ U(v) best color not considered by any neighbor use best color (Shortcut 1)
B'(v) ∩ U(v) impossible
B(v) ∩ U'(v) best color is considered by some neighbor continue
B'(v) ∩ U'(v) impossible

intersection



  
 

 

 

For each low-degree vertex (d(v) < 32), we use a fixed 
bitmap with 32 bits (i.e., an integer). For all other vertices, 
we maintain the full bitmap to ultimately assign the best 
possible color but only use two integers for the shortcut 
computations. The first integer specifies the best possible 
color and the second integer the worst possible color. We 
do not update the worst possible color as we found that, for 
high-degree vertices, it rarely gets small enough to matter. 
However, the best possible color is maintained precisely. 

The shortcuts are approximated as follows with the two 
integers. Shortcut 1 is applied if the best possible color of a 
lower-priority vertex is not in the range between the best 
and worst possible color of any of the uncolored higher-
priority neighbors. This simplified implementation runs in 
constant time (irrespective of how long the bitmaps are) but 
may miss some shortcutting opportunities. Shortcut 2 is 
simply skipped as it is less important (cf. Section 6.2.3). 

Our CUDA implementation has fewer than 300 state-
ments with around 150 kernel statements and is available 
at https://cs.txstate.edu/~burtscher/research/ECL-GC/. It 
produces a deterministic coloring and incorporates the 
above optimizations. It transfers the graph to the GPU and 
the final colors back to the CPU. The code repeatedly pro-
cesses the vertices until convergence is reached. For perfor-
mance reasons, the processing is done asynchronously, 
which may result in data races. However, these races are 
guaranteed to be benign because the bitmaps, once initial-
ized, only ever have bits cleared. Similarly, the first integer 
(see above) only ever increases. Due to these two types of 
monotonicity, it is always safe for a thread to act upon an 
outdated value, but doing so may require extra rounds. 

4 Related Work 

A large amount of related work exists on graph coloring. 
However, we know of no other work that proposes the use 
of shortcuts to increase the parallelism. 

The classical sequential graph coloring algorithm is 
based on the greedy first-fit heuristic. Several other heuris-
tics have been proposed that use relatively few colors and 
have good bounds on their computational complexity (cf. 
Section 1). In contrast, parallel algorithms have not been 
studied as extensively. Nevertheless, there are a few poly-
nomial-time algorithms, some of which can solve the prob-
lem using as few colors as the sequential algorithms. 

In 1986, Luby designed a Monte Carlo algorithm to find 
a maximal independent set (MIS) in parallel [20]. All verti-
ces in the MIS are given the same color. Then the algorithm 
finds a new MIS among the remaining vertices and assigns 
the vertices in the second MIS the second color, and so on 
until all vertices have been colored. 

In 1993, Mark Jones and Paul Plassmann proposed a new 
graph coloring heuristic (JP) [19] based on Luby’s Monte 
Carlo algorithm. Luby’s algorithm selects new random 
numbers in each iteration, which requires global synchro-
nization (a barrier). Moreover, generating the random num-
bers incurs overhead. Jones and Plassmann largely elimi-
nate the global synchronization and this overhead by 
choosing a random number for each vertex only once. 

The Largest-Degree-First (LDF) heuristic assigns a pri-
ority to each vertex that is proportional to the degree of the 
vertex. This causes the vertices to be colored in decreasing 
degree order, i.e., the vertices with the highest degree are 
colored first. Using this ordering typically yields a better 
coloring quality than the JP and greedy algorithms. Ran-
dom numbers are used to resolve conflicts when two neigh-
boring vertices have the same degree [17]. The JP algorithm 
can easily be augmented with LDF. The operation of the 
resulting parallel JP-LDF algorithm is outlined in Section 2. 

The Smallest-Degree-Last (SDL) algorithm tries to im-
prove upon the coloring quality of LDF by using more so-
phisticated weights [22]. It comprises two phases, a 
weighting phase and a coloring phase. In the weighting 
phase, the algorithm starts by finding all vertices with the 
minimum degree dmin. These vertices are assigned weights 
and are removed from the graph, which changes the degree 
of their neighbors. The algorithm repeatedly removes ver-
tices with degree dmin and assigns larger weights in each 
iteration. Once there are no vertices of degree dmin left, the 
algorithm continues with vertices of degree dmin+1 and so 
on. Then the coloring phase starts with the vertices that 
have the highest weights. It works in the same way as the 
LDF algorithm except is uses the weights instead of the de-
grees to determine the order in which to color the vertices. 
As mentioned in Section 1, SDL tends to yield a very good 
coloring quality but is slow. 

In 2011, Grosset et al. implemented their 3-step GM al-
gorithm in CUDA [16]. It partitions the graph, colors each 
partition independently, and resolves conflicts along the 
border first on the GPU and then on the CPU using one of 
the heuristics described in Section 1. The resulting runtime 
is often worse than the sequential algorithm [4]. 

The CUSPARSE library [8] includes the “csrcolor” 
graph-coloring code [3]. As the name implies, it operates 
on graphs in CSR format. We use the same format in ECL-
GC. Csrcolor is based on the Jones-Plassmann and Cohen-
Castonguay [5] algorithms. It uses multiple hash functions 
to generate the “random” numbers for each vertex. The lo-
cal maximums and minimums of the hash values are used 
to produce two distinct maximal independent sets. The 
GPU implementation is three to four times faster than the 



  
 

 

JP algorithm. However, csrcolor typically requires over 
twice as many colors as the JP algorithm. 

Chen et al. [4] proposed two graph coloring algorithms 
based on Nasre’s ideas for implementing irregular algo-
rithms on GPUs [24]. The first is a topology-driven algo-
rithm. It uses the first-fit heuristic to color all vertices in 
parallel with the first permissible color. Conflicts between 
adjacent vertices with the same color are handled by allow-
ing the vertex with the highest degree to preserve its color 
whereas the remaining conflicting vertices are uncolored. 
Chen et al.’s second algorithm works in the same way but 
is data driven. It maintains two worklists for holding the 
vertices that need to be processed, making it more work ef-
ficient, but maintaining the worklists incurs overhead. 

Chen et al. implemented multiple versions of their algo-
rithms with different optimizations [4], including bitmap 
operations to reduce the memory footprint and the time 
consumed in reading and writing the color mask. For better 
load balancing, they implemented Merrill’s balancing strat-
egy [23], which maps the workload of a vertex to a thread, 
warp, or block depending on the size of its neighbor list. 
Similarly, ECL-GC uses threads for processing vertices with 
degrees under 32 and warps for higher-degree vertices. 

5 Experimental Methodology 

We evaluate the graph-coloring codes listed in Table 2. 
Some of these programs have multiple versions. We only 
show results for the fastest version as well as the version 
producing the least number of colors if it is different. 

Table 2. The graph coloring codes we evaluate 

 
 
In the evaluated codes, we only measured the runtime of 

the color computation, excluding the time it takes to copy 
the graphs into main memory, to transfer data to and from 
the GPU, and to verify the result. We ran each experiment 
three times and use the best measured runtime. The ECL-
GC runtimes only vary by a few percent between runs. For 

all ECL-GC implementations, we verified the solution by 
comparing it to that of the serial code. 

We present results from two GPUs. The first is a Titan 
V with 5120 processing elements distributed over 80 multi-
processors. Each multiprocessor has 96 kB of L1 data cache. 
The 80 multiprocessors share a 4.5 MB L2 cache as well as 
12 GB of global memory with a peak bandwidth of 652 
GB/s. The second GPU is a GeForce GTX Titan X with 3072 
processing elements distributed over 24 multiprocessors. 
Each multiprocessor has 48 kB of L1 data cache. The 24 
multiprocessors share a 2 MB L2 cache as well as 12 GB of 
global memory with a peak bandwidth of 336 GB/s. 

The system we used for the serial and parallel CPU codes 
has dual 10-core 3.1 GHz Xeon E5-2687W v3 CPUs. Hyper-
threading is enabled, i.e., the 20 cores can simultaneously 
run 40 threads. Each core has separate 32 kB L1 caches, a 
256 kB L2 cache, and the cores on a socket share a 25 MB 
L3 cache. The 128 GB main memory has a peak bandwidth 
of 68 GB/s. The operating system is Fedora 23. 

We compiled all GPU codes with nvcc 9.2 using “-O3  
-arch=sm_70” for the Titan V and “-O3 -arch=sm_52” for 
the Titan X. The CPU codes were compiled with gcc/g++ 
7.3.1 using “-O3 -march=native”. 

Table 3. Information about the input graphs 

 
 
We used the 18 graphs listed in Table 3 as inputs. They 

were obtained from the Center for Discrete Mathematics 
and Theoretical Computer Science at the University of 
Rome (Dimacs) [10], the Galois framework (Galois) [12], 
the Stanford Network Analysis Platform (SNAP) [28], and 
the SuiteSparse Matrix Collection (SMC) [29]. The table 
lists the name, type, source, number of vertices, number of 
edges, average degree, maximum degree, and the percent-
age of vertices with a degree of at least 32 (for which we 
use simplified shortcuts). Where necessary, we made the 
graphs undirected and removed self-edges. Due to the CSR 

Device Ser/Par  Name Version Source
GPU Parallel  ECL-GC (our code) 1.0 [11]

 CUSP 0.5.1 [9]
 csrcolor 9.2.88 [3]
 Data-wlc 1.0 [4]
 Data-pq 1.0 [4]

CPU Parallel  GMMP-NT [7]
 FirstFit 1.0 [4]
 Grappolo [15]

CPU Serial  JP-D1 [7]
 FirstFit 1.0 [4]
 Boost 1.66.0 [1]

Graph name  Type Origin Vertices Edges davg dmax d≥32
2d-2e20.sym grid Galois 1,048,576 4,190,208 4.0 4 0.0%
amazon0601 co-purchases SNAP 403,394 4,886,816 12.1 2,752 3.3%
as-skitter Internet topo. SNAP 1,696,415 22,190,596 13.1 35,455 6.3%
citationCiteseer publication SMC 268,495 2,313,294 8.6 1,318 3.6%
cit-Patents patent cites SMC 3,774,768 33,037,894 8.8 793 3.0%
coPapersDBLP publication SMC 540,486 30,491,458 56.4 3,299 52.5%
delaunay_n24 triangulation SMC 16,777,216 100,663,202 6.0 26 0.0%
europe_osm road map SMC 50,912,018 108,109,320 2.1 13 0.0%
in-2004 web links SMC 1,382,908 27,182,946 19.7 21,869 8.4%
internet Internet topo. SMC 124,651 387,240 3.1 151 0.3%
kron_g500-logn21 Kronecker SMC 2,097,152 182,081,864 86.8 213,904 19.3%
r4-2e23.sym random Galois 8,388,608 67,108,846 8.0 26 0.0%
rmat16.sym RMAT Galois 65,536 967,866 14.8 569 11.4%
rmat22.sym RMAT Galois 4,194,304 65,660,814 15.7 3,687 12.4%
soc-LiveJournal1 community SNAP 4,847,571 85,702,474 17.7 20,333 14.0%
uk-2002 web links SMC 18,520,486 523,574,516 28.3 194,955 18.6%
USA-road-d.NY road map Dimacs 264,346 730,100 2.8 8 0.0%
USA-road-d.USA road map Dimacs 23,947,347 57,708,624 2.4 9 0.0%



  
 

 

 

format, each undirected edge is represented by two directed 
edges. While it may or may not make sense to color these 
graphs, we selected them for their wide variety. 

6 Results 

In this section, we first study the amount of parallelism. 
Second, we evaluate the coloring quality. Third, we inves-
tigate the throughput in completed vertices per second, that 
is, the number of vertices divided by the runtime. 

6.1 Amount of Parallelism 

In this subsection, we evaluate the intrinsic amount of par-
allelism with and without the shortcuts. We express the 
parallelism as the number of vertices divided by the number 
of steps it takes to color a graph in an architecture-agnostic 
way, i.e., assuming a machine with infinite resources that 
processes as many vertices per step as possible subject only 
to data dependencies. Hence, in every step, all vertices are 
colored that do not have to wait for uncolored higher-pri-
ority neighbors. 

 

 

Figure 6: Amount of parallelism in each step on the 
kron_g500-logn21 graph 

Figures 6 and 7 show the steps along the x axis and how 
many vertices are colored per step along the y axis. Note 
that the y axes use a logarithmic scale to better show what 
happens in the last steps, but this upsets certain intuitions 
that would hold if a linear scale were used, such as that both 
curves enclose the same area. The larger the number of col-
ored vertices in each step the higher the amount of paral-
lelism is. The blue curve shows the results without the 
shortcuts and the red curve with the shortcuts. Both ap-
proaches yield identical colorings and perform the same 
amount of total work. Therefore, finishing in fewer steps 
implies a higher average parallelism. 

Figure 6 shows that the shortcuts can yield a large in-
crease in parallelism, in this case a 7.85-fold increase. In 

contrast, Figure 7 shows the worst case, i.e., an example 
where the shortcuts do not increase the average parallel-
ism. However, they significantly increase the average par-
allelism on most of the tested inputs as shown in Table 4, 
which lists the number of steps, the average parallelism, 
and the improvement in parallelism for all 18 graphs. 

 

 

Figure 7: Amount of parallelism in each step on the 
uk-2002 graph 

Table 4: Number of steps and average amount of parallel-
ism with and without the shortcuts 

 
 
In the worst case (uk-2002), the amount of parallelism 

does not increase. This only happens on one of the 18 tested 
graphs. In the best case (rmat22.sym), the parallelism is 
over 12 times higher. On average, it is 3.4 times higher, 
demonstrating the potential of the shortcuts. 

Figure 8 shows the fraction of the vertices that is colored 
during initialization (blue), using the shortcuts (green), and 
conventionally (red), i.e., after all higher-priority neighbors 
have been colored. On average, 52.6% of the vertices are 
colored conventionally, 38.8% are colored using the 
shortcuts, and 8.6% are colored during initialization. The 
number of vertices colored in the initialization phase is 
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Avg parallelism 
with shortcuts
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parallelism

2d-2e20.sym 14 12 74,898.3 87,381.3 1.17
amazon0601 55 24 7,334.4 16,808.1 2.29
as-skitter 481 73 3,526.9 23,238.6 6.59
citationCiteseer 67 20 4,007.4 13,424.8 3.35
cit-Patents 140 26 26,962.6 145,183.4 5.38
coPapersDBLP 802 338 673.9 1,599.1 2.37
delaunay_n24 25 17 671,088.6 986,895.1 1.47
europe_osm 13 11 3,916,309.1 4,628,365.3 1.18
in-2004 501 490 2,760.3 2,822.3 1.02
internet 27 13 4,616.7 9,588.5 2.08
kron_g500-logn21 3,997 509 524.7 4,120.1 7.85
r4-2e23.sym 30 17 279,620.3 493,447.5 1.76
rmat16.sym 188 30 348.6 2,184.5 6.27
rmat22.sym 644 52 6,512.9 80,659.7 12.38
soc-LiveJournal1 1,095 322 4,427.0 15,054.6 3.40
uk-2002 943 943 19,640.0 19,640.0 1.00
USA-road-d.NY 12 10 22,028.8 26,434.6 1.20
USA-road-d.USA 14 13 1,710,524.8 1,842,103.6 1.08



  
 

 

identical to the number of roots in the DAG. Since the 
shortcuts shorten the dependence chains, they tend to be 
more effective, i.e., color a larger fraction of the vertices, on 
graphs with larger average degrees like kron_g500-logn21, 
which has a high maximum and average degree. 

 

 
Figure 8: Fraction of colors assigned by various means 

6.2 Comparison with GPU Codes 
This subsection compares the performance of ECL-GC to 
that of leading GPU codes. We show results for CUSP and 
csrcolor as well as Data-wlc and Data-pq, the two fastest 
versions of Chen et al.’s algorithms described in Section 4. 

6.2.1 Coloring Quality 
Figure 9 shows the number of colors needed by the five 
GPU codes. Lower numbers are better. The x axis lists the 
input graphs and the y axis the number of colors using a 
logarithmic scale. The rightmost set of bars reflects the ge-
ometric mean over all inputs. 

ECL-GC, CUSP, and csrcolor are deterministic and al-
ways produce the same coloring for a given input. This is 
not the case for Data-wlc and Data-pq, where the number 
of colors may vary. For these codes, we show the lowest 
observed number of colors out of 100 runs on the Titan V. 

ECL-GC either uses the smallest or the same number of 
colors for all inputs compared to the other four GPU codes. 
CUSP, Data-wlc, and Data-pq yield a similar coloring qual-
ity. Csrcolor requires the largest number of colors on each 
of the 18 graphs. The geometric mean is 30.6 colors for ECL-
GC, 35.0 for CUSP, 149.4 for csrcolor, 37.2 for Data-wlc, and 
34.3 colors for Data-pq. 

By design, the coloring of ECL-GC is that of JP with LDF, 
which tends to produce a good coloring quality. As dis-
cussed in Section 4, csrcolor requires more colors because 
it is based on the Cohen-Castonguay algorithm. Data-wlc 
and Data-pq are based on FirstFit, which typically results in 
good coloring when paired with LDF. 

6.2.2 Throughput 
Figures 10 and 11 present the throughput of the codes on 
two GPUs. The x axis lists the inputs and the geometric 
mean whereas the y axis shows the throughput in millions 
of completed (colored) vertices per second on a logarithmic 
scale. Throughput is a higher-is-better metric. 

Figure 10 shows the throughput on the Titan V. ECL-
GC, which is our implementation with the shortcuts, is 
faster than CUSP on all tested inputs. It is faster than Data-
wlc and Data-pq on 16 of the 18 graphs and faster than 
csrcolor on all but one input. Based on the geometric mean, 
ECL-GC is 29.9 times faster than CUSP, 5.5 times faster than 
csrcolor, 3.7 times faster than Data-wlc, and 2.9 times faster 
than Data-pq. Note that, in each of the few cases where the 
other codes are faster, they require more colors. 

We correlated the speedup of our code over the other 
codes with various graph properties and found a moderate 
linear correlation with both the maximum and the average 
degree, which is expected because the higher the degree the 
higher the chance that the algorithm must wait for higher-
priority neighbors, which is where the shortcuts can help. 
In fact, our code outperforms the other codes by at least a 
factor of two on all tested graphs with a maximum degree 
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Figure 9: Number of colors needed by the GPU codes 
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above 4000. On the kron_g500-logn21 graph, which has the 
highest average and maximum degree of the graphs listed 
in Table 3, ECL-GC is 17 times faster than Data-pq, the sec-
ond fastest of the five GPU codes. Due to its high degree, 
this graph requires the most work per vertex, which is why 
it results in a low throughput for all tested codes. 

 
For reference, Figure 10 also shows results for “ECL-GC 

w/o shortcuts”, which is ECL-GC with the shortcut code 
disabled. Its geometric-mean performance is slightly higher 
than that of the other tested codes, meaning our baseline 
implementation is on par with the best codes from the lit-
erature. Section 6.2.3 discusses the performance of the two 
shortcuts in more detail. 

 
Figure 11 shows throughput results for the older Titan 

X GPU. ECL-GC outperforms CUSP on all tested inputs. It 
outperforms Data-wlc and Data-pq on 15 and csrcolor on 
17 of the 18 graphs. Again, in all cases where the other 
codes are faster, they use more colors. Based on the geo-
metric mean, ECL-GC is 12.4 times faster than CUSP, 3.0 
times faster than csrcolor, 2.1 times faster than Data-wlc, 
and 1.9 times faster than Data-pq. 

6.2.3 Shortcut Performance 
Table 5 presents the performance benefit due to the short-
cuts. It shows the speedups attained when using only 
Shortcut 1 (+SC1), only Shortcut 2 (+SC2), and both 
shortcuts together (+SC1+SC2) relative to our code without 
any shortcuts (baseline). 

On all tested inputs, using both shortcuts together is al-
ways faster than using no shortcut. In the worst case, the 
shortcuts only improve performance by a factor of 1.027, in 
the best case by over a factor of 70, and in the mean by a 
factor of 2.63. These self-relative speedups demonstrate the 
practical utility of the shortcuts. 

Shortcut 1 provides most of the benefit. Adding it never 
hurts on the tested inputs, helps by a factor of over 2.5 in 
the mean and by more than a factor of 70 in the best case. 
Its benefit strongly correlates with the average degree of 
the graph (r = 0.82), which is why it helps the most on 
kron_g500-logn21, our highest-degree graph. 

Interestingly, adding Shortcut 2 on top of Shortcut 1 
hurts in three cases (by up to 2%) and adding it on top of 
the baseline also hurts in three cases (by up to 1.1%). In the 
mean, adding Shortcut 2 helps by a few percent and, in the 
best case, by 25.8%. There are two primary reasons for why 

 
Figure 11: Throughput in millions of completed vertices per second on a Titan X 
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Figure 10: Throughput in millions of completed vertices per second on a Titan V 
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Table 5: Speedup on the Titan V due to the shortcuts rela-
tive to the baseline code without any shortcuts 

 

Shortcut 2 is not more effective. First, our implementation 
does not use it on vertices of degree ≥ 32 (under 20% of the 
vertices in all but one graph, cf. Table 3). Second, employing 
it does not reduce the number of steps needed until a vertex 
can be colored. It only makes later steps a little faster be-
cause they may be able to skip checking a few neighbors. 

Executing the shortcut code itself incurs overhead. If 
this overhead cannot be amortized, there is a net slowdown, 
which explains the few cases where adding Shortcut 2 low-
ers the performance. Fortunately, the benefit of either 
shortcut is typically high enough to more than amortize 
this overhead, thus leading to speedups. 

6.3 Comparison with CPU Codes 
In the following subsections, we compare the performance 
of ECL-GC running on the Titan V to that of the leading 
parallel and serial CPU codes. Figures 12 and 14 show the 
number of colors. The x axis lists the inputs and the geo-
metric mean whereas the y axis lists the number of colors 
using a logarithmic scale. Figures 13 and 15 show the 
throughput. The x axis again lists the input graphs and the 
geometric mean whereas the y axis lists the throughput in 
completed vertices per second on a logarithmic scale. 

input baseline +SC1 +SC2 +SC1+SC2

2d-2e20.sym 1.000   1.046   1.005   1.092   
amazon0601 1.000   1.236   1.075   1.285   
as-skitter 1.000   3.957   1.001   4.198   
citationCiteseer 1.000   1.751   1.057   1.816   
cit-Patents 1.000   2.015   1.258   2.123   
coPapersDBLP 1.000   4.410   1.004   4.407   
delaunay_n24 1.000   1.126   1.037   1.168   
europe_osm 1.000   1.025   0.999   1.028   
in-2004 1.000   1.051   1.019   1.030   
internet 1.000   1.248   1.016   1.284   
kron_g500-logn21 1.000   70.378   1.004   70.179   
r4-2e23.sym 1.000   1.250   1.110   1.339   
rmat16.sym 1.000   5.112   1.008   5.251   
rmat22.sym 1.000   9.958   0.989   10.163   
soc-LiveJournal1 1.000   16.026   0.996   16.028   
uk-2002 1.000   2.590   1.010   2.612   
USA-road-d.NY 1.000   1.000   1.014   1.027   
USA-road-d.USA 1.000   1.068   1.003   1.073   

geo mean 1.000   2.570   1.032   2.632   

 
Figure 13: Throughput in millions of completed vertices per second on 20 Xeon cores (Titan V for ECL-GC) 
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Figure 12: Number of colors needed by the parallel CPU codes as well as by ECL-GC 
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6.3.1 Parallel CPU Performance Comparison 
This subsection compares the throughput and coloring 
quality of ECL-GC to leading parallel CPU codes. We show 
results for ColPack’s GMMP algorithm with the natural 
(NT) heuristic priority [14], the FirstFit implementation by 
Chen et al. [4], and the graph-coloring code Grappolo [15]. 

 

Figure 12 shows the number of colors assigned by the 
parallel CPU codes and by ECL-GC. As the number of col-
ors may vary from run to run for GMMP-NT, FirstFit, and 
Grappolo, we present the minimum number observed. ECL-
GC uses fewer colors than ColPack’s GMMP-NT on all 
tested inputs. It uses the smallest or the same number of 
colors as the FirstFit and Garppolo codes on 11 of the 18 
inputs. On the remaining seven inputs, those two codes re-
quire one fewer color than ECL-GC’s LDF heuristic. The 
geometric mean is 30.6 colors for ECL-GC, 36.0 for GMMP-
NT, 34.3 for FirstFit, and 34.0 colors for Grappolo. 

 

Figure 13 shows the throughput of the parallel CPU 
codes on the dual 10-core Xeon system. We ran the codes 
using both 20 and 40 threads. The results in Figure 13 are 
for 40 threads since hyperthreading yields a shorter run-
time in most cases. ECL-GC running on the Titan V is faster 
than GMMP-NT and Grappolo on all tested inputs and 

faster than FirstFit on 15 of the 18 inputs. Based on the ge-
ometric mean, ECL-GC is 7.2 times faster than GMMP-NT, 
4.0 times faster than FirstFit, and 7.8 times faster than Grap-
polo on the tested graphs. 

For reference, Figure 13 also shows results for “ECL-GC 
with CPU/GPU transfer”, which include the time to send 
the graph to the GPU and the resulting color information 
back to the CPU. This lowers the geometric-mean through-
put by a factor of 2.8, meaning it takes longer to transfer 
the data than to compute the coloring. Nevertheless, on 
most of the inputs and in the mean, the throughput is still 
higher than that of the parallel CPU codes. Of course, this 
depends on the performance ratio between the CPU and the 
GPU as well as the speed of the link between the two de-
vices. On our system and graphs, it is often faster to send 
the data to the GPU, perform the coloring there, and send 
the result back than to perform the coloring on the CPU. 
Note that graph coloring is generally a step of a larger com-
putation. If the previous and next steps are also executed 
on the GPU, no data transfers are needed. 

6.3.2 Serial CPU Performance Comparison 
This subsection compares the throughput and coloring 
quality of ECL-GC to leading serial codes. We show results 

 
Figure 15: Throughput in millions of completed vertices per second on a Xeon core (Titan V for ECL-GC) 
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Figure 14: Number of colors needed by the serial CPU codes as well as by ECL-GC 
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for ColPack’s sequential JP code with its fastest heuristic 
(D1) [7], the serial FirstFit code by Chen et al. [4], and the 
graph-coloring code in the Boost library [1][26]. 

Figure 14 presents the number of colors assigned by the 
serial codes and by ECL-GC. ECL-GC uses fewer or the 
same number of colors as serial FirstFit and Boost on all 
tested inputs. ECL-GC’s and JP-D1’s coloring quality is al-
most identical. This is not surprising given that JP-D1 and 
ECL-GC both implement the Jones-Plassmann algorithm 
with the largest-degree-first heuristic. The small discrepan-
cies on three inputs are due to different tie breakers. The 
geometric mean is 30.6 colors for ECL-GC, 30.9 colors for 
ColPack’s JP-D1, and 35.0 colors for both FirstFit and Boost. 

Figure 15 shows the serial throughput on the Xeon sys-
tem as well as that of ECL-GC running on the Titan V. ECL-
GC is faster on all inputs expect on in-2004. On this graph, 
on which the shortcuts are nearly ineffective and the aver-
age parallelism is low (cf. Table 4), ECL-GC is 16% slower 
than FirstFit. Based on the geometric mean, ECL-GC is 42.9 
times faster than JP-D1, 13.2 times faster than FirstFit, and 
324 times faster than Boost. 

7 Summary and Conclusions 

Graph coloring is an assignment of colors to the vertices of 
a graph such that no two adjacent vertices have the same 
color. It is an important step in many applications and is 
used, for example, in data mining, image processing, net-
working, resource allocation, and process scheduling. 

We present a deterministic parallel graph-coloring ap-
proach that improves upon the Jones-Plassmann algorithm 
with the largest-degree-first heuristic. It incorporates new 
algorithmic optimizations called “shortcuts” to increase the 
parallelism (by 3.4 times on average). Under certain condi-
tions, these shortcuts enable the code to break data depend-
encies without changing the ultimate color assignment. 

The shortcuts leverage intermediate coloring infor-
mation from neighboring vertices, which sometimes allows 
to correctly color a vertex even before all its higher-priority 
neighbors have been colored. The shortcuts are particularly 
useful for high-degree vertices. The paper also presents op-
timizations to efficiently implement these shortcuts. 

We implemented our approach in CUDA. The code is 
available at https://cs.txstate.edu/~burtscher/research/ECL-
GC/. Running on a Titan V, it is on average 2.9 times faster 
than the fastest prior GPU code, 4.0 times faster than the 
fastest OpenMP code running on 20 Xeon cores, and 13 
times faster than the fastest serial code we could find. Of 
course, these speedups are system dependent. Our code 
uses as few or fewer colors as the best GPU codes. Whereas 
there are a few inputs on which other GPU codes 

outperform ours in throughput, they require more colors in 
those cases. 

Comparing the performance across two different GPU 
generations, we find that our code is 3.1 times faster on the 
newer GPU whereas the other GPU codes are only up to 
twice faster. The better scaling of our code to a newer GPU 
may indicate that it will outperform the other codes by 
larger margins on future GPUs. 

In conclusion, we hope our work will help improve the 
performance of many applications that incorporate graph 
coloring as a key step and inspire researchers to develop 
similar shortcut ideas to increase the amount of parallelism 
in other important (graph) algorithms. 
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