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ABSTRACT

Image enhancement algorithms have the goal of improving the image quality and, therefore,
the usefulness of an image for a given task. Although there are several image enhancement
algorithms, there is no consensus on how to estimate the performance of these enhancement
algorithms. Since the final consumers of the resulting enhanced visual content are human viewers,
the performance of these algorithms should take into account the perceived visual quality of the
resulting enhanced images. Unfortunately, although in the last decades a lot of progress has
been made in the area of image quality assessment, designing metrics to estimate the quality
of enhanced and restored images remains a challenge. This is particularly true for underwater
image application, where images frequently need to be restored because of the severity of the
degradations introduced by the underwater environment. Therefore, there is a great need for
quality metrics that can estimate the quality of enhanced and restored images. In this thesis,
our goal is to design metrics for this scenario. First, we have designed a quality metric based on
texture operators and saliency. Second, we also designed a quality metric based on a deep learning
architecture convolutional neural network (CNN). Experimental results on the underwater image
database demonstrate that our approaches outperform the state-of-art methods compared. Third,
we have developed a new dataset for underwater image quality assessment. Additionally, we
also present a psychophysical study based on crowd-sourcing interface, in which we analyze the
perceptual quality of images enhanced with several types of enhancement algorithms. In this
experiment, we have developed a database that can be used to train image quality metrics, and
also can detect both increments and decrements in the perceived quality.

Keywords: Image Quality Assessment, Enhanced Images, Underwater Images, MSLBP, Convo-
lutional Neural Networks.



RESUMO

Título: Avaliação de Qualidade de imagens subaquáticas aprimoradas com redes neurais
convolucionais
Os algoritmos de aprimoramento de imagens tem o objetivo de melhorar a qualidade da imagem e,
dessa forma, sua utilidade para uma dada tarefa. Embora existam vários algoritmos de aprimora-
mento de imagem, não há consenso sobre como estimar o desempenho desses algoritmos. Desde
que os consumidores finais do conteúdo visual aprimorado são espectadores humanos, o desem-
penho destes algoritmos devem levar em conta a qualidade visual percebida da imagem resultante.
Infelizmente, apesar das últimas década tenha sido feito muito progresso na área de avaliação de
qualidade de imagem, projetar métricas para estimar a qualidade das imagens aprimoradas e res-
tauradas continua sendo um desafio. Isto é particularmente verdade para aplicações de imagens
subaquáticas, onde as imagens precisam ser restauradas frequentemente devido a severidade das
degradações introduzidas pelo ambiente embaixo da água. Desta forma, há uma grande demanda
por métricas que possam estimar a qualidade de imagens aprimoradas e restauradas. Nesta tese,
nosso objetivo é projetar métricas para este cenário. Primeiro, nós projetamos uma métrica de
qualidade baseada em operadores de textura e saliência. Segundo, nós também projetamos uma
métrica de qualidade baseada na arquitetura de aprendizado profundo de uma rede neural convo-
lucional. Resultados experimentais em um banco de dados de imagem subaquáticas demonstram
que nossas aproximação supera os métodos do estado da arte comparados. Terceiro, desenvolve-
mos um novo banco de dados para avaliação da qualidade de imagens subaquáticas. Adicional-
mente, também apresentamos um estudo psicofísico baseado em interface “crowdsourcing”, no
qual analisamos a qualidade percebida de imagens melhoradas com diversos tipos de algoritmos
de aprimoramento. Neste experimento, desenvolvemos uma base de dados que pode ser usada
para treinar métricas de qualidade que também possam detectar incrementos e decrementos na
qualidade percebida.

Palavras-Chave: avaliação de qualidade, imagens aprimoradas, imagens subaquáticas, MSLBP,
redes neurais convolucionais.
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1 INTRODUCTION

1.1 OVERVIEW

In the last 20 years, the field of image quality assessment has experienced a tremendous boom,
with a large number of new methods for image quality assessment being developed every year.
Digital imaging technologies restructure the way we capture, store, use, and share images. Today,
we have the ability to share photos online instantly, send and receive multimedia messages, and
stream live video across the globe instantly [6]. There has been a huge increase in the popularity
of image-based applications, particularly smartphones, laptops, tablets, and personal computers.
The image services offered by these applications have become an essential part of the end-user’s
life. As a consequence, the popularity of these applications has led to a huge growth in Internet
traffic. According to a current report by CiscoTM [7], every second, global internet traffic increases
by more than 100,000 gigabytes. In this scenario, image-based applications require quantifying
to what extent the content is affected by these operations. For this purpose, applications assess
the visual quality of affected (distorted) visual content to ensure that the delivered content meets
the requirements of end users. The goal of image quality assessment is to provide quality metrics
that can automatically predict perceived image quality.

In summary, image quality assessment (IQA) methods are useful tools for image processing
applications and systems. IQA methods can be classified into two categories: subjective and
objective IQA methods. Subjective IQA methods gauge the quality of visual content by perfor-
ming psychophysical experiments in controlled laboratory environments. In psychophysical or
subjective experiments, a number of human observers (subjects) analyze the visual quality of the
displayed contents. It is common to use a pool of subjects that are diverse (in terms of gender,
age, occupation, etc.) and naive to the technologies being tested. The experimental methodology
should follow a standardized recommendation, such as Recommendation ITU-R BT.500 [8] and
Recommendation ITU-T P.800.1 [9]. In most types of experimental methodologies, subjects are
asked to rate the quality or other attribute of the displayed content (e.g., colorfulness, sharpness,
noise, etc.). An estimate of quality is given by the mean opinion score (MOS), which is com-
puted by averaging the scores given by all subjects to a visual content test. Figure 1.1 shows
a block diagram of a typical subjective IQA experimental methodology. Although subjective
methods are considered ground-truth in visual quality assessment, these methods are expensive,
time-consuming, and their results are not easy to replicate.

Objective IQA methods use computational models, also known as quality metrics (QM), to
estimate the quality of visual content. Objective IQA methods are faster, cheaper, and can be
more easily incorporated into image-based applications. In other words, given the limitations of
subjective methods, objective methods are often preferred. For this reason, great effort has been
made to develop fast and high accuracy quality metrics [6, 10]. Figure 1.2 shows a block dia-
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Figure 1.1: Block diagram of a typical Subjective Quality Assessment (SQA) method.

Figure 1.2: Block diagram of a typical Objective Quality Assessment (OQA) method.

gram of a typical objective image quality assessment method. Objective IQA methods are either
dedicated quality metrics, which assess a specific type of distortion, or generic quality metrics
(also known as general-purpose metrics) that estimate the overall perceived quality. Since the
human visual system (HVS) is the ultimate estimator of visual quality, researchers often integrate
characteristics of the human visual system in the design of quality metrics. Depending on the
amount of reference information used, both dedicated and general-purpose quality metrics are
further divided into three types, i.e. full reference (FR) IQA methods, where a reference image
is needed to estimate the quality, and no reference (NR) IQA methods, which blindly estimate
quality without having access to the reference or pristine image. Reduce reference (RR) IQA
methods aim to predict the visual quality of distorted images with only partial information about
reference images [11]. The figure 1.3 shows types of objective quality assessment methods.

Several FR quality metrics take into account the lower-level aspects of the human visual sys-
tem, such as contrast sensitivity, luminance masking, and texture masking [12, 13, 14, 15, 16,
17, 18]. These HVS-based quality metrics are allegedly more reliable than purely pixel-based
FR-IQA methods, such as the peak signal-to-noise ratio (PSNR) and mean squared error (MSE).
Other FR-IQA methods incorporate characteristics of the human visual system using feature ex-
traction approaches [19, 20, 21, 22]. Webster et al. [23] proposed one of the first RR-IQA
methods. Their method uses spatial and temporal features to assess the quality of videos.

2



Figure 1.3: Types of image quality assessment.

For some multimedia applications, it is difficult to acquire information from visual reference
content. In this scenario, NR quality metrics are the only available option. Unfortunately, these
methods are generally less accurate than the FR methods, but they are often less complex. Some
NR quality metrics use a distortion-specific approach [24, 25, 26, 27]. Despite the fact that NR-
IQA methods have gained a lot of attention, their design remains a challenge [28, 29]. To further
improve the reliability of IQA methods, a current research trend consists of investigating the
impact of integrating visual attention into their design [30, 31, 32, 33]. This approach assumes
that if a distortion occurs in an area that attracts the viewer’s attention, it is more annoying than if
it occurs in any other area. The algorithm weighs local distortions with local saliency.

Image enhancement algorithms have the goal of improving the image quality and, therefore,
the usefulness of an image for a given task. Examples of image enhancement algorithms include
gray contrast adjustments, sharpness enhancement (or deblurring), denoising, and color enhance-
ment, which can be performed in the spatial or frequency domains. Figure 1.4 shows the basic
work of the image enhancement technique to improve the quality of images according to the ap-
plication scenario. However, although there are several image enhancement algorithms, there is
no consensus on how to estimate the performance of these enhancement algorithms [6]. Since the
final consumers of the resulting enhanced visual content are human viewers, the performance of
these algorithms should take into account the perceived visual quality of the resulting enhanced

3



Figure 1.4: Image enhancement techniques.

images. We believe that a specific quality metric designed to assess the quality differences in
enhanced or restored images can be used to estimate the success of an enhancement algorithm.

Unfortunately, although in recent decades much progress has been made in the area of image
quality assessment, the design of metrics to estimate the quality of enhanced and restored ima-
ges remains a challenge [34]. This is particularly true for underwater image application, where
images often need to be restored due to the severity of degradations introduced by the underwa-
ter environment, which are often stronger than degradations in a regular (air) environment [35].
Therefore, there is a great need for quality metrics that can estimate the quality of enhanced and
restored images [35]. In this thesis, our goal is to design metrics for this scenario. First, we have
designed a quality metric based on texture operators and saliency. Second, we also designed a
quality metric based on a deep learning convolutional neural network (CNN) architecture. We
have developed a large and diverse image quality database for enhanced images. The database
contains 35 SRCs images and 12 HRCs (different enhancement algorithms), resulting in a total of
455 test images. A crowdsourcing (online) psychophysical experiment was performed to obtain
quality scores for these images. We also conducted a controlled laboratory experiment (onsite)
and compared its results with the crowdsourcing (online) experiment. This database can be used
to train and test image quality metrics, which are sensitive to enhancement algorithms that may in-
crease or decrease perceived quality. We also generated the underwater image quality assessment
database, which is helpful in designing the objective image quality assessment for underwater
images.

1.2 PROBLEM STATEMENT

Image enhancement algorithms have the objective of improving image quality and therefore the
usefulness of an image for a given task [36]. Many techniques have been proposed for image
enhancement [37] these methods typically modify gray-level histograms, while other methods
use local contrast transformations, edge analysis, or global entropy transformations, in all of
these methods, there is no consensus on how to estimate the performance of these enhancement
algorithms [36]. Exploring the underwater world has become increasingly important in recent
years. Clear images in marine environments play an important role in underwater exploration and
investigation, such as marine biodiversity monitoring, underwater rescue, underwater pipeline
leak detection, underwater computer vision applications, etc. Poor visibility as a result of light

4



absorption and scattering poses a challenge to underwater image processing. Light absorption
attenuates light energy, whereas scattering changes the direction of propagation of light. These
effects drastically degrade the quality of underwater images, causing haze, loss of contrast, and
color deviation. Therefore, enhancing underwater images is desirable and useful.

Underwater imaging applications require clear images achieved through enhancement and
restoration techniques. Image restoration processes require physical degradation models that de-
pend on parameters such as turbidity, time, and attenuation coefficient [35]. Image-enhancement
methods are faster and do not require the calculation of parameters. The field of image enhan-
cement research needs adaptive approaches and faster image enhancement techniques. This is
particularly true for underwater image applications, where images often need to be restored due
to the severity of the degradations introduced by the underwater environment. Therefore, there is
a great need for quality metrics that can estimate the quality of enhanced and restored images. In
this thesis, our goal is to design metrics for this scenario.

1.3 STATE OF THE ART OF UNDERWATER IMAGE QUALITY ASSESSMENT

The quality of underwater images is important for several applications, such as exploration of
marine life, geological exploration, and archaeology. Capturing underwater images is a challen-
ging process, due to the physical properties of underwater environments, which causes light to be
attenuated when it transverses the water medium, either by absorption, scattering, or both. Ab-
sorption generates an energy reduction, while scattering changes the direction of light. Therefore,
images captured underwater may have different types of degradation, including limited-range vi-
sibility, nonuniform lighting, low contrast, blurring, diminished color, bright artifacts, and noise.
In other words, the visual aspect of underwater images may vary greatly depending on the cha-
racteristics of the water, including the types of particles present in the water and the depth of the
water [38].

Currently, there are several methods in the literature to restore and improve the quality of
underwater images [39, 40, 35]. Both image enhancement and image restoration algorithms have
the goal of improving the overall quality of the acquired image. Image enhancement methods
often use heuristic procedures to manipulate the image to achieve a pleasing visual aspect. Among
the enhancement methods that have been used to improve the visibility of underwater images
are histogram equalization algorithms [41, 42], retinex-based algorithms [43], particle swarm
optimization (PSO) [44], and fusion-based algorithms [45].

On the other hand, to obtain the desired result, image restoration methods formulate a signal
criterion that uses prior knowledge of the application/scenario and a degradation model to re-
construct or recover an undistorted image. There are several underwater image formation models.
McGlamery and Jaffe proposed one of the first image formation models [46, 47]. This model
has been used in the development of several underwater image acquisition systems. In 2006,
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Trucco, Olmos, and Antillon [48] proposed a simplified version of the Jaffe-McGlamery model
based on a self-tunning filter. To address the problem of blurred distortions in underwater ima-
ges, which generally originates from light scattering in ripples and suspended particles, Hou et
al. [40] incorporate optical properties to estimate lighting scattering parameters. Recently, several
machine learning-based restoration algorithms [49, 50] have been proposed to dehaze and denoise
underwater images.

The use of underwater images in computer vision and image processing applications often
depends on the success of restoration and enhancement algorithms [51, 52, 53]. To determine the
performance of these algorithms, we must estimate the quality of the restored/enhanced images as
perceived by human viewers. In most cases, the success of underwater restoration and enhance-
ment methods is measured using subjective qualitative observations and a few quantitative signal
error measures [54, 55]. Most methods used to estimate the performance of these algorithms do
not consider human perception or IQA methods. We believe that IQA methods are a viable option
to estimate the quality of restored or enhanced underwater images.

For underwater scenarios, where a reference or undistorted image is not available, we must
use NR-IQA methods to estimate the perceptual quality of restored and degraded images and de-
termine if they are adequate for the target underwater engineering application. Although in recent
decades great progress has been made in the area of image quality assessment, designing metrics
to estimate the quality of enhanced and restored images remains a challenge [34]. As mentioned
above, the final quality of underwater images depends on the type of underwater environment,
which can introduce specific chroma, saturation, and contrast degradations [56, 57]. Since IQA
methods are generally tuned to compression and transmission degradations, it is important to de-
sign methods that target the specific degradations of the underwater scenario. So far, few blind
(no reference) image quality metrics have been proposed with the goal of evaluating the quality
of underwater images [58, 1]. For example, Sanchez et al. [1] have proposed a underwater res-
toration algorithm that uses an NR-IQA method as a performance metric for the optimization
algorithm.

Naturally, in the last decade, the use of machine learning and CNN techniques to design
IQA methods has become extremely popular. By using deep learning CNN architectures, IQA
methods are able to extract complex image features and obtain non-linear quality mappings, while
requiring minimal knowledge of target domain. To the best of our knowledge, currently, there is
no NR underwater IQA method based on CNN. In this paper, we propose an NR-IQA method for
underwater images that is based on a deep learning CNN architecture. Our method uses a CNN
architecture that is able to learn the features of the image more effectively and then estimate the
image quality with greater accuracy. The proposed method employs small image patches as local
quality measures for image denoising and reconstruction.
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1.4 PROPOSED APPROACH

As mentioned earlier, in this work, our goal is to design IQA methods for enhanced and restored
images. To better understand how the quality of enhanced images is affected by the algorithms
parameters, the presence of degradations, and the type of content, we performed a psychophysical
study in which subjects rated the quality of enhanced images with several types of enhancement
algorithms, including color, sharpness, histogram, and contrast enhancements. The experiment
was carried out online using a crowd-sourcing interface. This type of experiment has the ad-
vantage of making it possible to collect data from a large number of participants [59]. We also
performed an experiment in a laboratory environment to serve as a control. Data from both types
of experiments were compared. It is worth noting that there are very few databases of enhanced
images in the literature.

In this work, we also studied the quality of images acquired in underwater scenarios. As
mentioned earlier, this type of image may contain severe distortions due to light absorption and
scattering, color distortion, poor visibility, and contrast reduction. Due to these degradations,
researchers have proposed several algorithms to restore or enhance underwater images [60]. Na-
turally, one way to assess these algorithms’ performance is to measure the quality of the resto-
red/enhanced underwater images. Unfortunately, since reference (pristine) images are often not
available, designing no-reference (blind) image quality metrics for this type of scenario is still a
challenge. We propose two NR enhanced underwater image quality assessment (NR-UWIQA)
methods.

The first method uses a multi-scale salient local binary pattern operator to estimate the quality
of these images [61]. More precisely, we develop a method that combines information from
salient maps and multiscale local binary pattern (MSLB) maps [62]. The proposed metric, named
MSLB-UWIQA, was tested on the UID-LEIA database, showing good performance compared to
other state-of-the-art methods. This approach will allow for a rapid and efficient evaluation of
the results of restoration techniques, opening a new perspective in the area of underwater image
restoration and assessment. The second method uses a deep learning architecture to estimate
quality. We presented a light-weight NR-UWIQA method based on a CNN architecture. We
trained the CNN model using patches of underwater images. Instead of feeding the model with
patches selected randomly from underwater images, we chose patches that were most perceptually
relevant by incorporating the properties of HVS name as edge and visual saliency. These HVS
properties helped to calculate the regions of interest that were used as training data. The proposed
method, named CNN-SP-UWIQA, has greater efficiency and robustness. Experimental results
on the underwater image database demonstrate that our approach outperforms the state-of-the-art
methods compared. We have developed an underwater image quality assessment database that
helps us to design an underwater image quality assessment metric.
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1.5 CONTRIBUTIONS

In this work, our achievements have been the following:

• We have developed an image enhancement database with images produced using several
enhancement algorithms. We conducted a psychophysical experiment to collect subjective
quality scores. Since there are few quality enhancement databases available in the literature,
this work represents a contribution to the area of image quality.

• We have developed an NR-UWIQA metric based on the MSLB operator, which is simple,
fast, and achieves good results.

• We have developed an NR-UWIQA based on a convolutional neural network. This metric
performs well, outperforming state-of-the-art methods.

• We have developed a database for assessing the quality of underwater images that is diver-
sified in both its contents and its restoration procedures.

• We have designed a generic IQA method that is capable of estimating the quality of restored
and enhanced images in various scenarios.

1.6 ORGANIZATION OF THE DOCUMENT

This document is divided into six chapters. Chapter 2 describes the basic concepts that have been
employed in this work with a brief literature review. In Chapter 3 we presents the a psychophy-
sical study in which we analyze the perceptual quality of images enhanced with several types of
enhancement algorithms, including color, sharpness, histogram, and contrast enhancement using
a crowd sourcing framework. In Chapter 4 we presents the no reference underwater image quality
assessment method that uses texture measurements to estimate underwater image quality. We also
adopt a no reference underwater image quality metric with deep convolutional neural network. In
Chapter 5 we develop a real underwater image quality assessment database which is helpful to
design a no reference underwater image quality assessment metric which is useful to measure the
quality of underwater images. Finally, in Chapter 6 we summarize the contributions of this work.
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2 BASIC CONCEPTS AND LITERATURE REVIEW

In this chapter, we present a background to the basic concepts that have been used in the develop-
ment of this work, including subjective and objective image quality assessment methodologies,
texture operators, saliency models, underwater image processing, and the basics of deep learning
(DL) architectures.

2.1 IMAGE QUALITY ASSESSMENT METHODOLOGIES

As mentioned earlier, IQA methods can be classified into two categories: objective and subjective
methods [63]. Subjective quality assessment methods are psychophysical experiments in which
participants rate the quality (or other attribute) of the images. Subjective experiments are the most
precise way to estimate quality and are therefore considered a standard for the area. Unfortuna-
tely, these methods are time-consuming, expensive, and difficult to incorporate into multimedia
applications. Objective image quality assessment methods are computer-based methods that can
automatically predict perceived image quality. There is a great interest in this area given the dif-
ficulties of estimating the performance of multimedia applications. In this chapter, we introduce
the basic concepts of these two types of IQA methods.

2.1.1 Subjective Quality Assessment Methodologies

In a psychophysical (subjective) experiment, a group of human subjects (participants) is asked to
evaluate the quality (or other attribute) of a set of visual stimuli. Among the important aspects
to consider when conducting a subjective experiment, some of the most important ones are the
pool of participants, the setup (physical) conditions, the methodology used to collect the data
and the statistical methods used to analyze the data. With respect to experimental methodology,
there are several international recommendations that provide details on how to conduct quality
experiments and obtain reliable results [64, 65, 66]. These recommendations suggest, among
other things, standard viewing conditions, criteria for the selection of observers and test materials,
the assessment procedure, and the data analysis methods.

It is important to include a pool of subjects with a diverse distribution of ages, gender, sexual
orientation, geographic location, and cultural background [67]. For physical setup in subjective
experiments, an important parameter is the viewing condition that affects the observers ability to
perceive the attributes of the visual stimuli [68]. Most subjective experiments are performed in a
laboratory environment, which is a strictly controlled environment designed to avoid errors and
ensure reproducibility. Recently, researchers have been conducting subjective experiments online
using crowdsourcing [69, 67, 70, 3]. In these experiments, researchers use commercial platforms
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(Amazon Mechanical Turk and Microworkers) or social networks (Facebook, Twitter, LinkedIn)
to recruit subjects to participate remotely in subjective studies. Crowdsourcing experiments have
many advantages, including the ability to recruit large numbers of participants. Although crowd-
sourcing experiments are very practical, collected scores are considered less reliable due to the
challenges and limitations of these experiments [71].

In terms of rating scales, the methodologies can be divided into direct and indirect rating
methods. Direct scaling methods collect the opinions of observers regarding each distinct stimu-
lus on the ratio scale. The scale value depends on the selected procedure. Once all the scores
given by all observers have been collected, the processing (including outlier detection and avera-
ging) is applied directly to the raw data [72]. The advantage of direct rating is that the data from
individual observers are taken directly from the scale, which simplifies the processing and inter-
pretation steps. Another advantage of the direct scaling procedure is that the scores of individual
observers can be placed directly on a clearly defined rating scale, which simplifies the subsequent
processing and interpretation. However, indirect procedures typically provide higher discrimi-
natory power and can be less complicated and tiring for observers. Several works have shown
that indirect scaling methods need a smaller number of subjects to provide the same reliability as
direct scaling procedures [72].

Generally, there are three types of experimental methodologies to conduct subjective experi-
ments: single-stimulus methods, double-stimulus methods, and stimulus comparison methods [73].
These methods generally have different applications, and the choice of a specific method depends
on the context, the purpose, and where the test will be performed in the data development pro-
cess. In single stimulus (SS) methods, test images are randomly displayed for a fixed amount of
time. After that, their disappearance from the screen, the observer is asked to score their level of
quality on a scale of 1 to 5. This quality scale is known as the Absolute Category Rating Scale
(ACR) [73], which is shown in Figure 2.1(a). A common variation of the SS methodology is the
Single Stimulus Absolute Category Rating Scale Hidden Reference (ACR-HRR), in which the
(unprocessed) reference sequence is included in the experimental sessions without any identifica-
tion. Another variation is the Single Stimulus Continuous Quality Evaluation (SSCQE), in which
the evaluation is performed continuously. For each test stimulus, the SS experiments output a
mean opinion score (MOS) value, which is computed by taking the average of the ratings for all
observers:

MOS =
1

N

N∑
i=1

Si, (2.1)

where Si is the score of an observation and N is the total number of observations. The MOS can
also be used to calculate the Difference Mean Opinion Score (DMOS), where the MOS for the
reference is then subtracted from the MOS for the other images. This generates a DMOS for each
image. The DMOS value for a particular test represents the subjective quality of the test relative
to the reference.

ITU-R Rec.BT500-13 details how to process the data gathered from subjective experiments.
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(a) (b)

Figure 2.1: (a) Quality Category Rating Scale, (b) Impairment Category Rating Scale.

It is common to compute confidence intervals (CI) of MOS values to show the variability of
subjective quality scores. The confidence level refers to the certainty that the confidence interval
contains the true population parameter when drawing numerous samples. The most common
confidence limits are 95% and 99%. This means that 95% of random samples drawn with a 95%
confidence interval will contain the true parameter. The confidence interval is computed using the
following equation:

CI = x̄± z
s√
n
, (2.2)

where x̄ is the sample mean, s is the sample standard deviation, n is the sample size, and z is the
number of standard deviations from the mean.

In Double Stimulus Methods (DS), test and reference sequences are presented simultaneously
to the participants, who evaluate their quality by comparing them. Similarly to the SS method,
the evaluation can be performed for short or continuous sequences, but as a consequence the
length of the experimental session is larger. Variations in DS methodologies include the Double
Stimulus Impairment Scale (DSIS), the Double Stimulus Continuous Quality Scale (DSCQS),
and the Simultaneous Double Stimulus for Continuous Evaluation (SDSCE). In DSIS, also called
Degradation Category Rating (DCR), the observer is first shown an unimpaired image, and then
the same content is degraded. The observer is asked to rate the distortion in the second image in
relation to the first image. The method uses a five-point impairment scale, shown in Figure 2.1(b).
In the DSCQS method, the observer rates the quality of the pair of test image (probably impaired)
and reference image using a continuous scale ranging from 0 to 100. However, the order of
presentation of the reference image is randomly changed throughout the experimental sessions.
The final result of a DS experiment is given in terms of differential mean opinion scores (DMOS)
values. The DMOS is calculated taking the difference between the MOS corresponding to the
reference image and the MOS corresponding to the test image [64].

In terms of stimulus comparison methods, although there are many of these methods, we
mention here the ordering by force-choice pairwise comparison and the pairwise similarity judg-
ment [64]. In the first method, two images of the same content are displayed, and observers are
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asked to choose the image with the highest quality. Observers are always required to choose one
image, even if they perceive them as having the same quality. In the second method, observers
are shown the pair of images. But in this case, they are asked not only to choose the image with
higher quality, but also to indicate the level of difference between them on a continuous scale.

The traditional subjective experiments mentioned above require the following:

1. a diversified pool of participants;

2. a laboratory environment, with physical conditions that adhere to the recommendations
(e.g., Rec. ITU-R BT.500 [74] and Rec. ITU-T P.910. [73]);

3. a dataset of test stimuli that the participants will evaluate.

In recent years, crowd-sourcing experiments have been used in various application areas as a cost-
effective substitute for subjective experiments in a laboratory setting [59, 75, 76, 77, 78, 79]. In
other words, instead of conducting the subjective experiment in a controlled laboratory setting,
researchers use dedicated platforms (e.g., Amazon Mechanical Turk1 and Microworkers2), social
networks (Twitter, Facebook, Linkedin) or email campaigns to recruit subjects to participate re-
motely in subjective studies. Crowdsourcing experiments have many advantages, including the
ability to recruit large numbers of participants. Additionally, crowdsourcing campaigns typically
require a short implementation time and can collect data from a variety of subjects with different
backgrounds, testing environments, and devices.

2.1.2 Objective Quality Assessment Methods

As mentioned earlier, subjective experiments have several disadvantages, including the fact that
they are time-consuming, expensive, and require access to a panel of naive and diverse pool of
human observers. Objective quality methods, on the other hand, are algorithms (implemented in
hardware or software) that automatically estimate the quality of an image [80, 81]. These methods
are designed and tested using subjective quality scores given to the visual content as ground-truth.
Recently, the area of image and video quality has made great progress, with the performance
of visual quality metrics improving considerably [6, 82, 83]. For this reason, objective quality
metrics, which are basically algorithms that are able to estimate quality automatically, are very
important in real-time multimedia applications.

Over the years, numerous objective quality metrics have been proposed. Based on the degree
of availability of the original visual content, quality metrics are categorized into FR metrics,
which need the reference content to perform the quality assessment, RR metrics, which require
only certain attributes (information about edges, histogram, etc.) of the reference content, and
NR or “blind” quality metrics, which assess image quality using only the test image without
requiring any information about the reference content. However, there are still many challenges

1https://www.mturk.com
2https://microworkers.com
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in this area, including the design of objective quality metrics to enhance visual content. Since
most quality metrics are designed to capture visual distortions, they cannot quantify the quality
changes produced by enhancement algorithms. Therefore, metrics that can automatically estimate
the quality of enhanced images and videos are needed. One of the challenges in developing
quality assessment methods for enhanced visual content is the lack of quality databases containing
enhanced images and their respective subjective quality scores (ground truth).

Most FR metrics measure the “fidelity” or similarity of the test image compared to the refe-
rence image. The reference is assumed to be the version of the content of the best possible quality.
FR image quality assessment (FR-IQA) methods provide the most reliable quality estimates [84].
One type of FR-IQA metrics is signal-based metrics or pixel-based metrics, which compare the
original and processed images at the level of pixel intensities. These types of metrics are very
popular because of their simplicity, low computational complexity, and clear mathematical mea-
ning. However, these methods do not always correlate well with subjective quality scores, since
human observers do not perceive quality as pixel differences [85].

An example of a signal-based IQA metric is the mean squared error (MSE), which is defined
as:

MSE(IR, IP ) =
1

X · Y

X∑
x=1

Y∑
y=1

(IR(x, y)− IP(x, y))
2 , (2.3)

where IR is the reference image, IP is its processed version (test), and X and Y represent the
width and height of the image in pixels, respectively. MSE measures the error between this
pair of images, with higher values of MSE corresponding to lower qualities and lower values
corresponding to higher qualities. The most popular pixel-based metric is the peak signal-to-
noise ratio (PSNR), which is computed as follows and expressed in decibels (dB):

PSNR(IR, IP ) = 10 log10

(
2B − 1

)2
MSE(IR, IP )

, (2.4)

where B stands for the number of bits used to express each pixel intensity value in the image, that
is, B = 8 for 8-bit images.

Many IQA metrics have been proposed that take into account the low-level characteristics of
HVS[86]. Among the most popular IQA metrics is the SSIM index proposed by Wang [83], which
attempts to quantify the visible difference between a distorted image and a reference image. This
index is based on the Universal Image Quality (UIQ) index [83]. The algorithm defines the struc-
tural information in an image as those attributes that represent the structure of the objects in the
scene, independent of the average luminance and contrast. The index is based on a combination
of luminance, contrast, and structure comparison. The comparisons are done for local windows
in the image, and the overall IQ is the mean of all these local windows. The SSIM is defined as:

SSIM(x, y) =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) , (2.5)
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where µx and µy are the mean intensities of windows x and y, respectively, σx and σy are the
standard deviation of windows x and y, respectively, and σxy is the cross standard deviation of
these windows. C is a constant defined as

C1 = (K1L)
2 , (2.6)

where L is the dynamic range of the image and K1 ≪ 1. C2 is similar to C1 and is defined as:

C2 = (K2L)
2 , (2.7)

where K2 ≪ 1. These constants are used to stabilize the division of the denominator. SSIM is
then computed for the entire image as:

MSSIM(IR, IP ) =
1

W

W∑
j=1

SSIM (xj, yj) , (2.8)

where IR is the reference image, IP is its processed version (test), xj and yj are the image contents
of the j-th local window, and W indicates the total number of local windows.

Another FR-IQA metric is Visual Information Fidelity (VIF) [87], which uses three models
to calculate the quality of distorted images. Both metrics are known as Natural Scenes Statistics
(NSS)-based IQA metrics. Some NSS-based metrics model the subband filtered coefficients of
the reference image. Each coefficient is expressed as a random variable employing a Gaussian-
scale mixture (GSM). A very interesting feature of VIF is its ability to recognize if the test image
is of superior quality and output a VIF index greater than one. Although this works mostly for
images with increased contrast, it is the first step towards designing IQA methods for enhanced
images.

The feature similarity index (FSIM) [63] is an IQA metric extracts and compares low-level
features from reference and test images. FSIM has been extended to consider information about
color by converting the original colorspace YIQ [63]. FSIM maps the features and measures the
similarities between two images. To describe FSIM we need to describe two criteria more clearly:
the phase congruency (PC) and the gradient magnitude (GM) [88]. PC is a method for detecting
image features that is invariant to light variation and contrast. It is also capable of detecting more
interesting features, stressing the features of the image in the frequency domain. We use the
horizontal and vertical Sobel operators Gx and Gy, respectively[89], and compute the magnitude
of the overall gradient of an image I:

Gx(I) =

1 0 −1

2 0 −2

1 0 −2

 ∗ I, Gy(I) =

 1 2 1

0 0 0

−1 −2 −1

 ∗ I. (2.9)

Next, obtain the overall gradient:
GI =

√
G2

x +G2
y. (2.10)
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Then, FSIM calculates the GM maps of two images, f1 (test image) and f2(reference image): G1

and G2, respectively. Next, it computes the PC maps, IR and IP , from these two images: PCR

and PCP . Then, it computes the similarity of the PC maps:

SPC(IR, IP ) =
2 · PCRPCP + T1

PC2
R + PCP

P + T1

, (2.11)

and of the GM maps:

SG(IR, IP ) =
2GIRGIP + T2

G2
IR

+G2
IP

+ T2

. (2.12)

In these equations, T1 is a positive constant that increases the stability of SPC . T2 is a positive
constant that depends on the dynamic range of the gradient magnitude values. The above equati-
ons describe the measurement to determine the similarity of two positive real numbers, outputting
a number ranging from 0 to 1.

Finally, SPC and SG are combined together to calculate the similarity SL of IR and IP :

SL(IR, IP ) = [SPC(IR, IP )]
α · [SG(IR, IP )]

β , (2.13)

where the parameters α and β are used to adjust the relative importance of the PC and GM
features. We set α = β = 1 for convenience. The FSIM index between IR and IP is defined as
follows.

FSIM(IR, IP ) =

∑
x ∈ ΩSL(x) · PCm(x)∑

x ∈ ΩPCm(x)
(2.14)

where Ω means the whole spatial domain of images IR and IP .

The Most Apparent Distortion (MAD) [90] is based on the assumption that HVS judges the
quality of the image according to the degree of distortion in the image. When the image is only
slightly distorted, observers tend to search for distortions, which is called a “detection-based
strategy.” Then, the model combines the local masking model computed in the spatial domain
with the local MSE calculated in the perceived luminance domain. The low-level properties of
HVS (contrast sensitivity, nonlinear perception of luminance, luminance, and contrast masking)
are combined into a map that contains the locations of visible distortions. Using this map, the
visibility-weighted MSE map is computed and combined to form a single scalar value using the
L2 norm.

In the case of heavily distorted images, the HVS does not have to look for distortions and
an “appearance-based strategy” is used. Here, the distortion is expressed as the extent to which
the appearance of the image content is degraded, which is computed using the local statistics of
multi-scale log-Gabor filter responses. In other words, the image is decomposed with log-Gabor
filters with four orientations and five different scales. Block-based statistics, such as variation,
skewness, and kurtosis, are obtained from every decomposition. These are then combined into
the statistical difference map, which is then again collapsed into a single scalar number. The final
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Figure 2.2: Example of salient regions (red circles on the left images) that attract the Human Visual System.

output by MAD is as follows:

MAD = (ddetect )
λ (dappear )

(1−λ) , (2.15)

where ddetect and dappear denote the values obtained by the “detection-based strategy” and “appearance-
based strategy”, respectively, and λ is the weight chosen according to the overall level of distor-
tion.

For heavily distorted images, λ should be close to 1. No optimal procedure for the selection
of λ is defined, but the authors achieved good results with λ calculated as follows:

λ =
1

1 + γ1 (ddetect )
γ2 . (2.16)

MAD is used on the luminance component of the image when the calculation of d is computatio-
nally demanding.

2.1.3 Visual Attention for Image Quality Assessment

Visual attention (VA) is a mechanism of HVS. When observing a scene, the human eye filters the
large amount of visual information available and focuses on selected (salient) regions [91]. This
selection process is actively controlled through oculomotor mechanisms that allow the gaze of
attention to hold on a particular location (fixation) or to shift to a preferred location when suffici-
ent information has been collected from the current focus (saccades). Fixations are instinctively
concentrated on highly informative areas; as a consequence, the amount of data to be further pro-
cessed by the brain is minimized, but maximizing the quantity of useful information. Figure 2.2
represents the VA mechanism, with the red circles in the images depicting the salient regions
captured with the image eye fixations captured with an eye tracker.

Two different mechanisms operate in VA: Bottom-up and Top-down. Bottom-up attention
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Figure 2.3: Saliency Weighted Quality Assessment.

is stimuli-driven and is based on intrinsic features of the input image such as orientation, color,
intensity, and motion. Bottom-up attention is the result of simple feature extraction across the
whole visual field. Therefore, a highly salient region of an input visual content can capture the
focus of human attention. For example, flashing points of light on a dark night, sudden motion
of objects in a static environment, and red followers on a green background can involuntarily and
automatically attract human attention. Top-down attention is a task-driven mechanism and refers
to the set of processes used to bias visual perception based on the task or intention. For example,
an observer is assigned a task to find a black pen in a scene of a room crowded with many other
things. Based on the prior knowledge, experience, and current objective of the observer, which
are mostly controlled by the high-level cortex, the selection of a region is established. Bottom-up
attention pops out only the candidate regions where targets are likely to appear, while top-down
attention can depict the exact position of the target.

Algorithms that detect salient regions automatically, without human intervention, are called
saliency models. For example, Itti, the graph-based visual saliency (GBVS), and the Boolean
Saliency Map (BMS) models [92, 93] are the most common and widely used bottom-up saliency
models. They use conventional programming strategies to compute saliency, in which saliency is
generated in three steps. In the first step, extraction, lower-level image features (contrast, lumi-
nance, and textures) are extracted and organized into a vector format. In the second step, activa-
tion, saliency maps are generated from each feature vector. Finally, in the third step, combination,
saliency maps are combined into one final saliency map. For example, the BMS first generates all
possible Boolean maps of a picture frame. Then, it applies a threshold to them to create activation
maps. Finally, a saliency map is generated by computing the mean of all activation maps.

Visual attention plays an important role in IQA. Any distortion that occurs in a salient area
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is more important to the overall perceived quality. Therefore, the distortion that occurs in salient
areas should be treated differently from the distortion in less salient areas. For this purpose, visual
attention can be used to improve the accuracy of IQA metrics to make quality estimates more
accurate. Recently, a variety of conventional image quality metrics [94, 95] and video quality
metrics [18, 17, 32, 33, 96, 97, 98, 99], have incorporated the saliency information to improve
their quality predictions. In most existing works, visual attention is used as a weighting factor
to spatially pool objective quality estimates from a quality map [100]. A weighted salient-based
IQA metric can be computed as follows:

εsal =

∑
x,y ε(x, y) · ω(x, y)∑

x,y ω(x, y)
, (2.17)

where x and y are the horizontal and vertical spatial indices, ε(x, y) is the error map computed
using an FR-IQA, and ω(x, y) is the saliency map calculated using a salient model that outputs
values between 0 and 1, with 1 corresponding to highly salient pixels and 0 to non-salient pixels.
εsal denotes the salient weighted IQA measure, which estimates quality and gives a higher im-
portance to errors in highly salient areas and a lower importance to errors in less salient areas.
Figure 2.3 depicts this process of weighing salient regions. In this figure, the FR-IQA metric is
the SSIM and the saliency map is the BMS.

The work of Zhang et al. [31] presented detailed statistical evaluations on the performance
of saliency-weighted quality metrics for both images and videos. More recently, a CNN-based
NR-IQA method [101] has been proposed that incorporates saliency information in image quality
prediction.

2.1.4 Image Quality Performance Metrics

The effectiveness of objective quality metrics is generally quantified by the degree to which its
quality prediction agrees with human judgements (MOS or DMOS), that is, by comparing the
predicted quality scores with subjective quality scores. Statistical measures are often used as
performance metrics. In visual quality assessment, the most common and widely used perfor-
mance metrics are Spearman’s rank order correlation coefficient (SROCC) and Pearson’s linear
correlation coefficient (LCC).

LCC measures the degree of relationship between linearly related variables and is calculated
as follows [102, 103]:

rx,y =

∑n
i=1(xi − x)(yi − y)√

[
∑n

i=1(xi − x̄)2] [
∑n

i=1(yi − ȳ)2]
, (2.18)

where rx,y LCC between x and y, n is the number of observations, xi is the value of x at ith
observation and similarly yi is the value of y at ith observation. SROCC is a nonparametric
measure that is used to measure the degree of association between two variables and is calculated
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as follows [102, 103]:

rs = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
, (2.19)

where rs denotes SROCC, di is the difference between the ranks of the corresponding variables
and n is the number of observations. The difference between SROCC and LCC is that SROCC
benchmarks the monotonic relationship between two variables, while LCC benchmarks the linear
relationship. The PLCC and SROCC values closer to 1 represent the better performance of the
quality metric.

2.2 UNDERWATER IMAGE PROCESSING

The underwater environment is the area immersed in water in a natural or artificial body of water
such as an ocean, sea, reservoir, river, or aquifer. The underwater environment is considered the
origin of life on Earth and is the most important environmental region for sustaining life and the
natural habitat of most living organisms. Many human activities are carried out in accessible
areas of the underwater world. Therefore, it is important to understand the characteristics of the
underwater imaging model to conduct research in different areas.

The secrets of deep-sea ecosystems can be unlocked to provide new sources for the develop-
ment of pharmaceuticals, food and energy resources, and renewable energy products. Underwater
imaging research has increased significantly over the past decade. This is mainly due to human
dependence on valuable underwater resources. Effective exploration of the underwater world is
only possible if there are excellent methods to enhance underwater images. Underwater imagery
analysis is important for marine resource exploration, marine ecology research, deep-sea asset
monitoring, and naval military applications [104, 105]. The use of available underwater resour-
ces is of great importance to humans. For this reason, remotely operated underwater vehicles
(ROVs) and autonomous underwater vehicles (AUVs) equipped with a high-quality imaging sys-
tem are needed to effectively explore the underwater environment. The low quality of underwater
images leads to the failure of the computer systems used to visual inspection the images. There-
fore, the development of underwater enhancement techniques to perform challenging underwater
imaging tasks is extremely important. In recent decades, much research has been conducted in
the field of underwater image recovery and enhancement.

Underwater image processing deals with the refinement of image information necessary for
human and machine interpretation and processing [106]. Underwater research in the areas of
detection of cracks in underwater pipelines, exploration of flora and fauna, and marine archa-
eology is largely based on clear and unambiguous underwater images. Complete investigation
of underwater applications is dependent on the quality of the captured underwater images. In
general, the quality of underwater photographs depends on numerous aspects, such as limited vi-
sibility, uneven illumination, unwanted signals such as noise, and degrading colors. Underwater
image enhancement can be broadly divided into two categories, namely image restoration and
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image enhancement. The underwater image enhancement does not use a physical model for the
enhancement task. It uses qualitative and subjective criteria to produce a visually pleasing image.
Enhancement-based approaches are simpler and faster than model-based approaches [107].

2.2.1 Challenges of Underwater Imaging

Underwater imaging systems consist mainly of optical cameras or specialized equipment to cap-
ture underwater images [108]. Except for optical cameras, all other methods have their own
limitations, such as restricted field of view, depth limitations, complex operations, etc. ROV con-
trol is complex due to unfamiliar nonlinear hydrodynamic effects, lack of an accurate model of
ROV dynamics, and uncertainty of parameters. The underwater research requires highly skilled
divers, it is an expensive proposition. Each investigation may require divers and supervisors on
call for a single mission. Additionally, only a limited amount of time can be spent in an underwa-
ter medium, especially when a diver conducts an investigation. This results in an increase in the
time required for exploration. This disadvantage can be overcome largely by using underwater
image enhancement techniques.

When light propagates through water, the optical properties of water adversely affect underwa-
ter imaging. The refractive effect in an underwater medium makes it much more difficult to focus
on the object being photographed, resulting in a blurred image. Light and color absorption signifi-
cantly affects the visual quality of underwater images. To overcome this limitation, it is important
to conduct research to develop efficient and powerful enhancement methods. The medium of
water is a natural light source that absorbs a significant amount of light that passes through it.
For every 10 m depth under water, half the light is lost. This means that at a depth of 10 m, we
have only 50% of the light we had on the surface and at a depth of 20 m, only 25% [106].The
availability of light is not always the same; it depends on the time of day. The surface of water
reflects the least amount of light when the Sun is directly overhead. Weather plays a crucial role
in the availability of light. In stormy weather, turbulent water has a significant effect on light con-
ditions. Color absorption is another major challenge, as a result of the absorption of wavelengths
of light. Blue and green colors have longer wavelengths compared to red colors and therefore
extend further into the depths, which is why underwater images have blue and green hues.

Absorption and scattering result in blurring, reduced contrast, and a general loss of image qua-
lity. This problem is exacerbated when there is high turbidity underwater or when strong artificial
light sources are used. Artificial light sources cause uneven illumination of the scene, resulting in
reflections that obscure image details and create bright spots [35]. This can lead to misinterpreta-
tion of the data. The fluorescence of biological objects and the presence of macroscopic particles
in the water cause the degradation of underwater images. Underwater imaging provides measu-
res to overcome some of these challenges by making visual information part of the quantitative
assessment. The application of efficient image-based methods will provide accurate quantitative
information with a minimum of human oversight to complement visual inspection techniques and
improve reliability.

20



Images acquired in underwater scenarios may contain severe distortions due to light absorp-
tion and scattering, color distortion, poor visibility, and contrast reduction. Due to these degra-
dations, researchers have proposed several algorithms to restore or enhance underwater images.
One way to assess these algorithms’ performance is to measure the quality of the restored/enhan-
ced underwater images. Unfortunately, since reference (pristine) images are often not available,
designing no-reference (blind) image quality metrics for this type of scenario is still a challenge.
In fact, although the area of image quality has evolved a lot in the last few decades, estimating the
quality of enhanced and restored images is still an open problem. In this work, we present two
no-reference image quality evaluation metrics for enhanced underwater images (NR-UWIQA).
The first metric uses an adapted version of the multiscale salient local binary pattern operator to
extract image features, while the second metric uses a deep learning architecture. Both proposed
metrics were tested on the UID-LEIA database, presenting good accuracy performance compared
to other state-of-the-art methods.

2.2.2 Underwater Imaging Model

The presence of dust particles leads to the phenomenon of scattering in the underwater medium.
The light reflected from the outside of the object reaches the camera, and a scattering effect occurs
when the light interacts with suspended particles present in the imaging medium. The two types
of scattering that affect underwater images are forward scattering and backward scattering [104].
Forward scattering Ef occurs when the light reflected from the object is scattered as it travels
in its direction before reaching the camera, which in turn results in a blurred image. Backward
scattering occurs when the reflected light reaches the camera directly before it reaches the scene
to be illuminated. This results in low contrast and a haze-like effect on the image [105, 107].

According to Lambert-Beer’s empirical law, the decrease in light intensity depends on the pro-
perties of the medium through which the light travels [35]. The intensity decreases exponentially
as it spreads over water. This loss of intensity is called attenuation. It results from the effects
of absorption, which causes a loss of light energy, and scattering, which causes a change in the
direction of the electromagnetic energy [52]. The phenomenon of absorption and scattering leads
to attenuation of light. Light attenuation is important in underwater images because it results in a
hazy effect that hinders imaging applications in the marine environment. Light attenuation limits
visibility to about 20 m in clear water and 5 m in turbid water. The absorption of light in water
varies with wavelength. The different colors of light disappear with increasing water depth. Red
light is absorbed first because of its shortest wavelength. The blue color penetrates the farthest
into the water medium due to its longest wavelength, hence the bluish coloration in underwater
images [106, 35].

Underwater imaging models are often used for image restoration algorithms. The Jaffe-
McGlamery underwater imaging model is a well-known imaging model proposed by Jaffe and
McGlamery. Figure 2.4 illustrates the fundamentals of this model, where light captured in the
underwater medium is represented as the linear superposition of a direct component, a forward
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Figure 2.4: Illustration of the Jaffe-McGlamery model for underwater light propagation [1].

scatter component, and a backward scatter component. The model is based on the facts of li-
near superposition and modeling of medium water. The total irradiance Et entering the camera
consists of a linear combination of these three components, given by:

ET = Ed + Ef + Eb, (2.20)

where Ed is the direct component, Ef is the forward scattered component, and Eb is the backward
scattered component.

2.2.3 Underwater Image Enhancement

The main goal of image enhancement is to process an image so that the resulting image is of
better quality than the original image. Image enhancement techniques can be used to improve
the interpretability of images for humans or computer algorithms. To achieve these goals, image
enhancement algorithms adjust the attributes of the input image according to specific tasks. There
are many digital image enhancement techniques, and the appropriate choice depends on the ima-
ging application, the task at hand, and the viewing conditions. Image enhancement methods
can be divided into the following two categories: spatial domain methods and frequency domain
methods. In spatial domain techniques, to achieve the desired enhancement, the processing is per-
formed directly on the image pixels. In frequency-domain methods, the image is first converted
to the frequency domain, where processing is performed.

Image enhancement can be used in all applications in which images are consumed, such as
multimedia transmission applications, medical imaging, satellite image analysis, and underwater
imaging. Image enhancement algorithms simply transform an image I into an image Ih using
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a transform T . Representing the pixels in the images I and Ih by r and s, respectively, this
transformation can be expressed by the following expression:

s = T (r),

where T is a transformation that maps the pixel value r into a pixel value s.

As mentioned earlier, the design of IQA metrics is an important step for measuring the perfor-
mance of enhancement techniques. Moreover, observer-specific factors, such as HVS properties
and the observer’s experience, will introduce a great deal of subjectivity into the choice of image
enhancement methods [109]. In the particular case of underwater image processing has received
considerable attention within the last decades, showing important achievements. In this work we
review some of the most recent methods that have been specifically developed for the underwater
environment. This is primarily due to the dependence of human beings on the valuable resources
that exist in underwater. Effective work of exploring the underwater environment is achievable by
having excellent methods for underwater image enhancement. These techniques are capable of
extending the range of underwater imaging, improving image contrast and resolution. After con-
sidering the basic physics of the light propagation in the water medium, we focus on the different
algorithms available in the literature. The conditions for which each of them have been origi-
nally developed are highlighted as well as the quality assessment methods used to evaluate their
performance. Fig. 2.5 illustrates an example of pristine underwater images with their enhanced
versions.

2.2.4 Database for Underwater Images Quality Assessment

However, currently available IQA methods have shown little success when blindly evaluating the
quality of underwater images. In this work, we present no-reference (underwater) image qua-
lity assessment (NR-UWIQA) methods, which will be described in detail in the next chapters.
To design these metrics, we must use real-world underwater image datasets. An example of an
underwater dataset is the Fish4Knowledge dataset [110], which is used for the detection and re-
cognition of targets. The SUN dataset [111] is used for object detection, the MARIS dataset [112]
is used for autonomous marine robotics, and the SEA-thru [113] dataset is used for range maps.
However, existing datasets do not provide ground-truth or reference images, which makes it dif-
ficult to design image quality metrics for these types of applications. Recently, Sanchez et al.
proposed UID-LEIA (Underwater Image Database of the Laboratory of Embedded Systems and
Integrated Circuit Applications) [1]. Figure 2.6 shows a sample of the 45 reference images and
135 distorted underwater images contained in this dataset. In addition to the images, UID-LEIA
also contains subjective quality scores for all of these images, making it possible to use this da-
taset in the design of underwater IQA methods. We have also developed a real-world underwater
image dataset, which is helpful in designing a no-reference metric.
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Figure 2.5: Illustration of pristine underwater images with their enhanced versions.

2.3 BRIEF INTRODUCTION TO MACHINE LEARNING

Machine Learning (ML) is a subset of the knowledge domain of Artificial Intelligence (AI). ML
is defined as “algorithms that process data, learn from those data, and then apply what they have
learned to make decisions” [114]. Alpaydin [115] mentions that machine learning can be used
to program computers using optimization performance criteria and example data. We have a
model defined up to some parameters, and learning is the execution of a computer program to
optimize the parameters of the model using the training data or past experience. The model may
be predictive, to make predictions, or descriptive, to gain knowledge from the data, or both [115].
For example, by analyzing sample face images, a learning program captures the pattern specific
to each person and then recognizes them by checking for this pattern in a given image. This
is an example of a pattern recognition problem [115]. Based on the types of applications, ML
algorithms can be divided into four categories: supervised, unsupervised, semi-supervised, and
reinforcement learning. As shown in Figure 2.7, supervised learning is a predictive model that
processes labeled data to achieve a specific task.

For example, regression and classification are supervised learning applications. Some of the
most popular regression methods are as follows: Random Forest Regressor (RFR), Support Vector
Machine (SVM), Linear Regression (LrR) and Logistic Regression (LgR). Unsupervised learning
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Figure 2.6: Sample underwater images from UID-LEIA database.

is a descriptive model that processes unlabeled data. The model learns from the hidden structure
of the data. An application of unsupervised learning methods is to learn associations of different
attributes of data. Semi-supervised learning is the combination of supervised and unsupervised
learning methods. For example, learning from unstructured data to define tags and types of con-
tent in text classification problem is one example of an application of semi-supervised methods.
In reinforcement learning, the model assesses the policies (rules) and learns from past good action
sequences to be able to generate a policy. For example, in some applications, the output of the
system is a sequence of actions. In such a case, a single action is not important; what is important
is the policy, which is the sequence of correct actions to achieve the goal. An action is good if it
is part of a good policy. Robotic cars are one of the reinforcement learning methods.

In IQA metrics, the most commonly used ML methods are SVR, LrR, and RFR. SVR is a
kernel-based regression method that uses variants of kernel functions for learning. For example,
CORNIA [116], CQA [117], SSEQ [118], BRISQUE [119], LTP [120], DIIVINE [121], MLBP
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Figure 2.7: Categories of machine learning algorithms

[2], and GWH-GLBP [122] are FR-IQA metrics, while V-BLINDS [123], and SSDCT [124] are
NR-IQA video quality metrics, which use SVR. CORNIA [116] uses the SVR model to learn
from unlabeled data. For example, Freitas et al. [125] used the RFR model in his quality model,
which is based on ensemble learning that brings together multiple decision tresses [115]. Hui et
al. [126] used handcrafted spatial and temporal features and the SVM model to blindly predict
the quality of the video.

There are several types of neural networks, as shown in Figure 2.8. For quality assessment
methods, most commonly used neural networks are multilayer perceptron (MLP), CNN, and
Long Short-Term Memory Network (LSTM-N). The multilayer perceptron is an artificial neu-
ral network structure that can be used for classification and regression. It is fully connected,
which means that every node in a layer is connected to each node in the next layer. For example,
in SINGH2019 a multilayer perceptron with a single hidden layer and four neurons has been used
[127] to model a NR video quality assessment method. The Long Short-Term Memory is a type
of recurrent neural network (RNN) where connections between nodes form a directed graph along
a temporal sequence. This allows it to exhibit temporal dynamic behavior. LSTM-N can use their
internal state (memory) to process sequences of inputs.

CNN is a well-known deep learning architecture inspired by the natural visual perception
mechanisms of living things. In 1990 LeCun[128] published a modern CNN framework and
later improved the architecture of the convolutional neural network. However, due to the lack
of large training data and computational power, at that time their networks cannot perform well
on more complex problems, such as large-scale image and videos. Since 2006, many methods
have been developed to overcome the difficulties in training deep CNNs [129]. Most notably,
Krizhevsky proposed a classical CNN architecture and showed significant improvements over
previous methods in image classification. The overall architecture of their method, AlexNet[130],
is similar to LeNet-5 but has a deeper structure. Due to the success of AlexNet, many works
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Figure 2.8: Illustration of different types of neural networks.

have been proposed to improve its performance. Among them, four representative works are
ZFNet[131], VGGNet[132], GoogleNet [133], and ResNet[134]. A typical trend in the evolution
of architectures is that networks are becoming deeper and deeper.

Lee Kang[135] proposed one of the first NR image quality assessment (IQA) (2D images)
methods in their work, 32× 32 patches are used as input to the CNN architecture. Apart from the
input and output layers, in the hidden layer, there is one convolution layer, one pooling layer, and
two fully connected layers. Domonkos [136] have developed an no reference video quality asses-
sment method that uses frame level features, which were obtained from a pre trained CNN using
transfer learning. A temporal pooling using a regression algorithm (SVR) is used to aggregate
these frame-level features for each video and predict overall quality. Singh and Aggarwal [127]
have proposed a no reference video quality assessment model in which spatial and temporal fe-
atures are extracted by a three-dimensional local binary pattern (LBP) operator. These features
are mapped to a single scalar quantity using a simple two-layer artificial neural network (ANN)
with a single hidden layer of four neurons. Ahn and Lee [137] have proposed an NR Deep Blind
Video Quality Assessment (DeepBVQA) method, in which spatial features are extracted by a
CNN, named BIECON [138], while temporal features are handcrafted. The final quality score
of the video is computed using a feature vector generated by aggregating the pooled frame-level
features. Domonkos and Szirányi [139] developed a no reference video quality assessment model
based on a long short-term memory (LSTM) network. The method considers the video frames as
a time series of deep features, extracted with the help of a CNN, and uses an LSTM network to
predict the video quality scores.

2.3.1 Deep Learning Methods

Traditional ML-based algorithms are based on hand-crafted features obtained from a feature en-
gineering task. On the other hand, deep learning-based methods do feature engineering and learn
from these features without human intervention, which is why deep learning has become more
popular over time. The formulation of neural networks is inspired by the human brain and the
human brain consists of billions of neurons interconnected to each other. Each neuron receives
the signal, processes it, and passes it on to the other neurons. This is how information is passed on
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Figure 2.9: A perceptron in forward propagation.

in our brain. Likewise, deep learning focuses on using neural networks to automatically extract
patterns in raw data and then using these patterns or features to learn how to perform a task. Tra-
ditionally, machine learning algorithms define a set of features in the data. Usually, these features
are handcrafted or hand-engineered, and, as a result, they tend to be pretty brittle in practice. The
key idea of deep learning is to learn these features directly from data in a hierarchical manner to
detect a face, for example, start by detecting the edges in the image, composing these edges to-
gether to detect middle-level features, such as an eye or a nose or mouth, and then, going deeper,
composing these features into structural or facial features to finally recognize the corresponding
face. This hierarchical way of thinking is really the core of deep learning.

An important question arises, “why we are considering deep learning now?”. The answer to
this question is that the data have become much more pervasive now. Deep learning models are
extremely hungry for data, and we are able to get a huge amount of data easily from different
online sources. Second, now we have powerful GPU hardware to run deep learning algorithms
in parallel processing. And finally, due to open source toolboxes like TensorFlow, Keras, and
PyTorch, building and deploying these models has become streamlined.

The fundamental building block of deep learning is a single neuron (also known as a percep-
tron). As shown in Figure 2.9, a single neuron works in a forward propagation format of the
information that passes through it. We can divide a set of inputs xi to xm, and each of these
inputs or each of these numbers is multiplied by their corresponding weights wi and then added
together. We take this single number, which is the result of addition, and pass it through a non-
linear activation function to produce our final output ŷ. We also have a bias function, which is a
shift activation function. The right-hand side of the figure illustrates the forward propagation of a
perceptron, and the left-hand side illustrates the mathematical representation of a perceptron. We
can re-write this concept in more concise way as follows:

ŷ = g(w0 +XTW), (2.21)
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Figure 2.10: Deep Neural Network (DNN)
.

where X represents a vector of inputs x1 to xm at time T , W represents a vector of weights from
w1 to wm. The output ŷ is simply obtained by taking the dot product of X and W, adding a bias
w0, and then applying a non-linearity g.

Using one perceptron, we can build a DNN by simply stacking the layers of perceptrons to
create more and more hierarchical models, where the final output is computed by going deeper
and deeper into the network. Figure 2.10 shows an example of a deep neural network with many
hidden layers and many nodes in each hidden layer. Each layer has neurons or perceptrons in-
terconnected with neurons in the next layer. The layer into which we feed the input is called the
input layer. The number of nodes in this layer depends on the number of dimensions of the data.
The output layer is the layer in which the output is generated. The number of nodes depends on
the number of classes in the classification problem or the scalar values in the regression problem.
The hidden layer is like the black box in which the extraction of features takes place. The number
of hidden nodes and the number of hidden layers are arbitrary. For example, in image classifi-
cation, every hidden layer extracts features that help identify images. The first hidden layer may
extract features, such as edges. The second hidden layer builds upon the features extracted from
the first layer and may extract features related to the objects, e.g., the structure of different faces.
The more hidden layers we increase, the more complex features extracted [114].

To mathematically represent this deep neural network, first we define the dot product, sum-
mation of input vectors, and their corresponding weights:

zk,i = wk
0,i +

nk−1∑
j=1

g(zk−1,j)w
(k)
j,i , (2.22)

where k is the number of layers, n is the number of inputs, wj,i is the ith weight of the perceptron
of the jth input, wk

0,i is the bias of the ith input of the kth layer, and z represents the dot product and
summation of the input vectors and their corresponding weights before applying the nonlinearity,
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and it can be written as follows:

zi = wk
0,i +

m∑
j=1

xjw
k
j,i. (2.23)

Then, we can obtain our output ŷ as follows:

ŷ = g

(
wk

0,i +

dk∑
j=1

)
g(zj)w

k
j,i, (2.24)

Where k is the number of layers, wk
j,i is the weight of the jth perceptron of the ith input of the

kth layer, zj is the output of the jth perceptron, dk represents the desired output value of the
perceptron in layer k, and g is a nonlinear activation function.

The nonlinear activation function allows us to deal with nonlinear data because, in the real
world, data are always nonlinear. In quality assessment methods, the Exponential Linear Unit
(ELU) activation function [140] is commonly used because this function tends to converge faster
and produces accurate results. When training a neural network, we want to find a network that
minimizes the empirical loss (average loss over the entire dataset) between the predictions and the
ground truths (MOS in the case of quality assessment). For quality assessment methods, Mean
Squared Error (MSE) loss is a commonly used loss, which can be computed as follows:

MSE = 1
n

n∑
i=1

(Yi − Ŷi)
2, (2.25)

where n is the number of data points, Yi represents ground truth values and Ŷi represents predicted
values. To find the weights of the neural network, which will minimize the loss of the training
dataset, optimization functions are used, such as SGD [141], which is commonly used for loss
optimization. In the training process, specifying the learning rates determines how many steps
the loss optimization function takes to reach local minima.

For quality assessment methods, the most commonly used deep learning methods are CNN
and LSTM. CNN consists of convolutional layers that perform a convolution operation on multi-
dimensional input images. Let us take an example of a 2D image. Suppose that we have a 4 × 4

patch or filter, which will consist of 16 weights. We will apply the same 4 × 4 filter to the input
and use the result of that operation to define the state of the next layer of neurons. Therefore, the
neuron in the next layer will be defined by applying this patch with a filter of the same size and
learned weights. Then, we are going to shift that patch on the input image by one pixel to get
the next patch and compute the next output neuron. This is how the convolution operation works.
Using small patches of the image, convolution learns the features of the image while preserving
the spatial relationships between pixels.

Each neuron in the CNN layer will compute a weighted sum of each of its patch inputs. We
apply and activate the neuron with some nonlinear activation function, so that we can handle
nonlinear data relationships. We also need to add a bias in the summation operation that allows
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the activation function to be shifted. In other words, we can say that each neuron in the hidden
layer only sees a very specific patch of its inputs. It does not see all input neurons. In this case,
each neuron output observes only a very local connected patch as input. We take a weighted sum
of those patches, apply a bias, and then obtain a feature map (FM) as a result of a convolution
layer. The feature map represents the state of the neuron in the next layer. We can define the
convolutional layer mathematically as follows:

yFM = g

(
m∑
i=1

n∑
j=1

wi,jx(r(i)+p,r(j)+q + b

)
(2.26)

where wi,j represents i × j filter or patch matrix i × j, xi+p,j+q represents the patch size p × q

in the input image x and r is the dilation rate. Specifically, using this equation, an element-wise
multiplication is performed using every element in w by the corresponding elements in the input
x. We add bias b and activate it with nonlinearity g. For each neuron in the hidden layer, yFM

becomes the input of the neurons in the next layer.

The general layers in DNN-based deep learning methods are as follows [142, 143, 144]:

• Input Layer: The input layer is the layer associated with the input image data. The input
layer is usually a tensor with dimensions, such as the dimensions of the input image, namely
the length, width, and number of channel images or their transformations.

• Convolution Layer: Convolutional layers are layers that carry out the convolution process
from the previous layer. This layer stores the parameters or weights of the training results.
The output of this layer (in the form of a tensor, often referred to as a feature map) usually
has a length and width smaller than the input layer but a greater depth. The movement of
the filter in the image is controlled by the parameter stride [144].

• Activation Layer: It is an activation function that decides the final value of a neuron, as
described in Eq. 2.21. These functions convert linear input signals into non-linear output
signals, which supports the learning of deep networks.

• Pooling Layer: This layer is responsible for reducing the spatial size of the convolved fe-
ature. This is to decrease the computational power required to process the data through a
dimensionality reduction, but extract dominant features that are rotation and position inva-
riant.

• Fully Connected Layer: It is the final layer that functions as a classifier or a regressor. This
layer generally uses artificial neural networks that can be trained. This layer stores the
weight of the training results.
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3 PERCEPTUAL QUALITY ASSESSMENT OF
ENHANCED IMAGES

In this chapter, we present a psychophysical study in which we analyze the perceptual quality of
images enhanced with various types of enhancement algorithms. To estimate and compare the
quality of the enhanced images, we performed a psychophysical experiment based on the Double
Stimulus Continuous Quality Scale (DSCQS) methodology. To perform an online psychophysical
experiment, we designed a crowdsourcing interface. We also performed another experiment in a
controlled laboratory environment and compared its results with the crowd-sourcing results.

3.1 INTRODUCTION

Our main goal is to introduce a quality database for enhanced images. To our knowledge, curren-
tly there is only one image enhancement quality database [145]. However, this database contains
only low-resolution images that were manually processed using professional photo editing soft-
ware (Adobe Photoshop). We present a database containing images with higher resolution that are
enhanced with twelve different standalone image enhancement algorithms. Our goal is to produce
a set of images similar to what is found in popular consumer applications. Most importantly, the
database contains subjective scores for each image, which were obtained with a crowd-sourcing
experiment.

In classical image enhancement algorithms, the value of the pixels is manipulated to achi-
eve the desired enhancement effect. For example, the unsharp mask filter is a simple and highly
versatile sharpening algorithm that enhances fine details by adding high-frequency spatial infor-
mation to the original image [146]. An unsharp mask is simply an out-of-focus image created
by spatially filtering the sample image with a Gaussian low-pass filter. This filter can be viewed
as a convolution operation of an image with a kernel mask that is a two-dimensional Gaussian
function (g(x,y)). A Gaussian lowpass filter is used to blur the image and remove noise [147].

Histogram equalization algorithms (HE) are very popular contrast enhancement methods [89],
which are used in many applications, such as medical image enhancement and underwater image
enhancement. There are also other variations of the HE algorithm that can be used for image
enhancement. For example, the dynamic histogram equalization (DHE) algorithm [148] parti-
tions the input histogram into sub-histograms so that there is no dominating component. Each
sub-histogram goes through HE, providing a better overall contrast enhancement because of the
controlled dynamic range of the gray levels, which eliminates the compression of low histogram
components. Another algorithm is the average histogram equalization (AHE), which is an excel-
lent contrast enhancement method for natural and medical images. Another variant of HE is the
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Hue Saturation Histogram Equalization (HSHE) [149], which mirrors the properties of the global
HE method in the local HE method to avoid artifacts while improving global and local contrasts.
The HSHE algorithm can be applied in two ways: by processing the luminance or by processing
each channel individually.

Another type of enhancement algorithm targets low-light scenarios, which often contain a lot
of noise. Ren et al. proposed a joint low-light enhancement and noise reduction strategy [150]
that aims to enhance low-light images, mitigating the inherent noise problem. This method per-
forms a decomposition based on the Retinex model into successive sequences, which sequenti-
ally estimates a piecewise-smoothed illumination and a noise-suppressed reflectance. After the
illumination and reflectance map are obtained, the illumination level is adjusted to generate the
enhanced image. In this work, we use the above-cited enhancement algorithms to produce images
with different quality levels.

3.2 CROWDSOURCING EXPERIMENTS

As mentioned earlier, subjective experiments are considered the ground-truth in image quality. To
guarantee the validity, reliability, and reproducibility of subjective quality assessment methods,
over the years, several recommendations have been drafted for experimental methodologies.
Examples of popular recommendations are Rec. ITU-R BT.500 [74] and Rec. ITU-T P.910.
[73]. It is worth mentioning that a good number of these experimental methodologies have been
derived from classic psychometric practices [151]. Experimental methodologies have different
specifications, including the presentation of stimuli, the type of subjective scale, and the scoring
procedure. Each type of methodology has advantages and disadvantages, and it is difficult to
cover all factors to provide a specific set of recommendations. Pinson et al. [152] have detailed
several aspects that should be taken into consideration when performing an experiment, such as
the environment conditions, the number of participants and stimuli, and the scoring procedure.

In terms of the subjective scoring procedure, methodologies can be divided into rating- or
ranking-based methods [152]. In ranking-based methods, participants are asked to rank images
in terms of their quality or to compare each pair of images of the set (a pairwise comparison,
PC) [152]. For example, PC methodologies require that participants compare all possible com-
binations of image pairs, which is a very time-consuming process. PC methodologies are often
considered when the differences between stimuli are small and, therefore, hard to differentiate.
In rating-based methods, participants assign a score to each stimulus presented to them, using
either a numerical scale or a category scale. These methods are generally less time-consuming
than rank-based methodologies and, consequently, more popular. For all rating-based methods,
the final subjective score of a stimuli, i.e., the MOS (mean opinion score), is computed by taking
the average of the scores over all subjects.

In terms of stimuli presentation, rating-based methodologies can be single-stimulus (SS),
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double-stimulus (DS), or multi-stimulus (MS). In SS methodologies, participants rate the qua-
lity of just one stimulus (the test), without having a reference. In DS and MS methodologies,
participants rate the quality of two or more stimuli, which are presented simultaneously or clo-
sely spaced in time. According to the rating scale used, the DS methodologies can be classified as
Double Stimulus Continuous Quality Scale (DSCQS) [74] or Double Stimulus Impairment Scale
(DSIS) [153]. In DSIS (also referred to as Degradation Category Rating - DCR), participants rate
both displayed stimuli using a discrete 5-point impairment scale: Imperceptible (5), perceptible
but not annoying (4), slightly annoying (3), annoying (2), very annoying (1). In DSCQS, par-
ticipants rate the quality of both the reference image and the test image using a 5-point quality
scale: Excellent (5), Good (4), Fair (3), Poor (2), and Bad (1). For SS methodologies, a popular
scale is the absolute category rating (ACR) [73], in which volunteers rate images using a 5-point
impairment scale or a 5-point quality scale (as described above).

In summary, traditional subjective experiments require the following:

1. a diversified pool of participants;

2. a laboratory environment, with physical conditions that adhere to the recommendations
(e.g., Rec. ITU-R BT.500 [74] and Rec. ITU-T P.910. [73]);

3. a dataset of test stimuli that the participants will assess.

In recent years, crowd-sourcing experiments have been used in various application areas as a cost-
effective substitute for subjective experiments in a laboratory setting [59, 75, 76, 77, 78, 79]. In
other words, instead of conducting the subjective experiment in a controlled laboratory setting,
researchers use dedicated platforms (e.g., Amazon Mechanical Turk1 and Microworkers2), social
networks (Twitter, Facebook, Linkedin), or email campaigns to recruit subjects to participate
remotely in subjective studies. Crowdsourcing experiments have many advantages, including the
ability to recruit large numbers of participants. Additionally, crowdsourcing campaigns typically
require a short implementation time and can collect data from a variety of subjects with different
backgrounds, testing environments, and devices.

Although crowd-sourcing platforms help collect data from a larger population, participants
are unsupervised and evaluate stimuli at their leisure using their own hardware. In other words,
experimenters have limited control over how and when participants perform the experimental
tasks, such as the duration of the experimental session, the lighting in the room, and the displays
/ devices used by participants, which are all important factors that influence the perceived quality.
For example, in laboratory experiments, a fixed amount of time is allocated for the experiment,
which is often broken down into sessions to avoid fatigue. However, in crowdsourcing, parti-
cipants perform the experiment at their convenience, taking pauses or interrupting the session
when they feel like. In fact, it is known that crowdsourcing participants are reluctant to do longer
sessions [78]. Finally, compared to laboratory experiments, crowdsourcing experiments have a

1https://www.mturk.com
2https://microworkers.com
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higher number of unreliable participants and, therefore, a certain number of unreliable quality
scores [69]. However, when performed carefully, crowdsourcing experiments may yield results
similar to laboratory experiments [78]. In this work, we performed a crowdsourcing subjective
experiment using the DSCQS methodology.

3.3 DATABASE CONTENT GENERATION

Crowd

Sourcing

Rating Images

Dataset of

Reference

Images

Enhancement

Algorithms

Dataset of

Enhanced

Images

Generating

Pair of Images

Reference+Enhanced Images

Observers

Quality

Scores

Analysis

Final DMOS

DSCQS

Figure 3.1: Block diagram of the strategy used to create the database and run the crowd-sourcing experiment.

Figure 3.1 shows a block diagram of the strategy used to generate the database. Our first step
was to choose 35 original (source - SRC) images. These images were taken from three image
quality databases to allow for future comparisons of enhanced and degraded images. More speci-
fically, we took 5 SRC images from the CSIQ database [5], 5 original images from the TID2013
database [4], and 25 original images from the ChallengeDB database [3]. Table 3.1 shows a list
of SRC images, along with their names in the corresponding databases. These chosen source
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Table 3.1: List of SRC images of the experiment, which were taken from the Challenge database [3], TID2013 [4]
and CSIQ [5] databases.

SRC Database Name Name in Databases
SRC01 Challenge database 10
SRC02 Challenge database 17
SRC03 Challenge database 129
SRC04 Challenge database 50
SRC05 Challenge database 113
SRC06 Challenge database 138
SRC07 Challenge database 147
SRC08 Challenge database 152
SRC09 Challenge database 167
SRC10 Challenge database 173
SRC11 Challenge database 186
SRC12 Challenge database 255
SRC13 Challenge database 261
SRC14 Challenge database 271
SRC15 Challenge database 338
SRC16 Challenge database 344
SRC17 Challenge database 414
SRC18 Challenge database 442
SRC19 Challenge database 444
SRC20 Challenge database 452
SRC21 Challenge database 455
SRC22 Challenge database 500
SRC23 Challenge database 525
SRC24 Challenge database 527
SRC25 Challenge database 820
SRC26 CSIQ database 1600
SRC27 CSIQ database boston
SRC28 CSIQ database child swimming
SRC29 CSIQ database trolley
SRC30 CSIQ database woman
SRC31 TID2013 database 103
SRC32 TID2013 database 104
SRC33 TID2013 database 107
SRC34 TID2013 database 111
SRC35 TID2013 database 123

contents are diverse in terms of spatial activity, semantic content, and color distribution. The first
row (SRCs) in Figure 3.2 shows examples of SRC images taken from the (a-b) TID2013, (c-d)
CSIQ, and (e-f) ChallengeDB databases.

Our next step consists of choosing the enhancement algorithms to be used as different test
conditions of our experiment. In this thesis, we refer to these test conditions as Hypothetical
Reference Circuits (HRC). We chose a total of 12 enhancement algorithms: Color Enhance-
ment (CE), Contrast Enhancement (CrE), Sharpness Enhancement (SE), Brightness Enhancement
(BE), Unsharp Masking (UM), Gaussian Blur (GB), Histogram Equalization (HE), Dynamic His-
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Figure 3.2: Sample source (SRC) images used in our database, processed with different enhancement algorithms
(HRCs - see Table 3.2). SRC images were taken from the (a-b) TID2013, (c-d) CSIQ, and (e-f) ChallengeDB
databases.

togram Equalization (DHE) [148], Exposure Fusion Framework (EFF) [154], Average Histogram
Equalization (AHE), Hue Saturation Histogram Equalization (HSHE), and Joint Enhancement
and Denoising Method via Sequential Decomposition (JEDMSD) [150]. Table 3.2 shows a list
of the HRCs of the database and the corresponding enhancement algorithms. We use traditio-
nal versions of these algorithms, which were implemented using Pillow package [155] in Python
[156] and Matlab [157]. To generate the test images, we processed each of the 35 SRCs using all
HRCs, generating a total of 420 enhanced images. The last three rows in figure 3.2 list the images
processed with HRC02, HRC03, and HRC04, which were generated from the SRC images shown
in the top row.

Given the number of test images (420), we manually divided the set of stimuli into 3 subsets.
Each subset contains 140 images, with different combinations (non-factorial) of at least 10 HRCs
and 35 SRCs. To avoid presentation bias, we generated 4 versions of these 3 subsets, which had
different HRC-SRC combinations. In total, there were 12 groups of different test images. In this
way, each participant did not rate all possible combinations of HRCs and SRCs, but only a third
of them, which made the experiment less tiring.

3.4 EXPERIMENTAL METHODOLOGY

Each experimental session is divided into four stages. In the first stage, called the registration,
the participant fills out a form with personal information. In the second stage, called the training,
the participant watches a set of sample images and their corresponding enhanced versions. The
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Table 3.2: Enhancement algorithms and their corresponding Hypothetical Reference Circuits (HRC) in the experi-
ment.

HRC Enhancement Algorithm Abbreviation
HRC01 Color Enhancement CE
HRC02 Contrast Enhancement CrE
HRC03 Brightness Enhancement BE
HRC04 Sharpness Enhancement SE
HRC05 Unsharp Masking UM
HRC06 Gaussian Blur GB
HRC07 Histogram Equalization HE
HRC08 Dynamic Histogram Equalization DHE
HRC09 Exposure Fusion Framework EFF
HRC10 Average Histogram Equalization AHE
HRC11 Hue Saturation Histogram Equalization HSHE
HRC12 Joint Enhancement and Denoising JEDMSD

Method via Sequential Decomposition

goal is that the participant familiarizes himself/herself with the quality range of the images in the
database. In the third stage, called the practice, the participant performs the scoring procedure
by performing a small number of trials, identical to those in the experimental session. Finally,
in main experimental session, the participant rates the quality of an SRC image and its enhanced
version, which was processed with a specific HRC. Figure 3.3 shows a screenshot of the interface,
showing this scoring procedure for each trial. In the interface, the 5-point quality scales are
shown below each image. The positions (left or right) of the SRC and its enhanced version are
randomized for each trial. The database created in this work is available for download on the
GPDS site3.

3.5 CROWD-SOURCING EXPERIMENTAL RESULTS

A total of 108 participants participated in the crowd-sourcing experiment, 78% of the participants
being male and 22% female. The participants’ age ranged from 17 to 63 years. To analyze the
gathered data, we computed the mean observer scores (MOS) and the difference MOS (DMOS).
MOS is calculated by averaging the scores given by all participants for each HRC and each test
image. DMOS is computed by taking the average of the differences between the scores given
to a test image and the score given to its corresponding SRC. In other words, we average the
differences between the scores of the two images, which are shown jointly to participants in each
experiment trial.

Figure 3.4 presents the DMOS for each of the HRCs and SRCs. Each plot in this figure
corresponds to the DMOS of a single HRC across the different SRCs (x-axis) from this figure it
is hard to identify any patterns from the graphs. To take a closer look at the results and minimize

3<http://www.ene.unb.br/mylene/databases.html>
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Figure 3.3: The crowd-sourcing experimental interface, displaying an SRC image and its version processed with a
specific HRC.

the effect of image content, we compute the average of both DMOS and MOS values for each
HRC across all SRCs. Figures 3.5 and 3.6 show the mean MOS and DMOS values, respectively,
for each individual HRC, along with their confidence intervals. For DMOS, negative values
indicate that the enhancement algorithm (on average) reduced the perceived quality of the SRC
image, while positive values indicate that the algorithm (on average) improved the quality of
the SRC image. Notice that HRC01, HRC04, and HRC05 produced positive average DMOS
values, while HRC06-HRC12 produced negative average DMOS values. For brightness (HRC02)
and contrast enhancement algorithms (HRC03), the results were inconclusive. The Sharpness
Enhancement algorithm (HRC04) produced the highest DMOS values, followed by the Unsharp
Masking (HRC05) and Color Enhancement (HRC01) algorithms.

To verify if the participants perceived differences on the algorithm’s image quality when com-
paring two HRCs, we executed a paired-samples t-test. This test checks if there is a statistically
significant difference between the average DMOS considering pairs of HRCs. In each pairwise
comparison, we considered only the cases where the participant scored both HRCs. The most re-
levant results of this test are shown in Table 3.3. Notice that the average DMOS of six HRC pairs
is not statistically significant (p > 0.05): HRC01-HRC05, HRC03-HRC10, HRC07-HRC08,
HRC07-HRC09, HRC08-HRC09, HRC11-HRC12. This means that participants (on average) did
not see a difference in quality between these pairs of HRCs. For all other combinations of HRC
pairs, the test found statistical differences between the average DMOS, which means that partici-
pants (on average) can distinguish the image quality produced by the remaining combinations.

To verify whether content (SRC) affects quality perception, we performed a one-way ANOVA
to determine if there is a difference that is statistically significant between average DMOS, consi-
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Figure 3.4: Average DMOS values versus the SRC image, for each HRC.

Table 3.3: Paired sample t-test pairs for which the differences in DMOS were not statistically significant.

Pair HRC N Mean Std.dev t p

HRC01-HRC05
HRC01 222 0.4640 1.0746

-1.562 0.120
HRC05 222 0.5946 0.9643

HRC03-HRC10
HRC03 293 -0.1640 1.2165

0.838 0.403
HRC10 293 -0.2389 1.3564

HRC07-HRC08
HRC07 578 -0.9498 1.4431

0.795 0.427
HRC08 578 -0.9896 1.3932

HRC07-HRC09
HRC07 588 -0.9388 1.4568

0.836 0.404
HRC09 588 -0.9796 1.4296

HRC08-HRC09
HRC08 590 -1.0186 1.3856

-0.071 0.944
HRC09 590 -1.0153 1.4195

HRC11-HRC12
HRC11 624 present -0.5048 1.4255

1.601 0.110
HRC12 624 -0.6154 1.4532
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Figure 3.5: Mean Observer Score (MOS) computed across all SRCs for each HRC (see Table 3.2).
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Figure 3.6: Difference Mean Observer Score (DMOS) computed across all SRCs for each HRC (see Table 3.2).

dering SRC as an additional factor. For all groups (HRCs), ANOVA returned a value of p < 0.05,
meaning that there is at least one pair of SRCs, considering each HRC, that has a difference in
the average DMOS that is statistically significant. To identify these pairwise comparisons, we
performed a Tukey-Kramer post-hoc test, which allows different group sizes, but gives the same
result as the Tukey post hoc test would give if the group sizes were equal. The test shows that
1,151 combinations (out of 7,141 possible combinations) have differences in average DMOS that
are statistically significant. This means that in 16% of the cases, the participants found that an
enhancement algorithm led to a visible difference for a specific pair of SRCs. We see this behavior
by observing the DMOS values in Figure 3.4, which change according to the SCRs.

Another output parameter of the Tukey-Kramer test is the number of homogeneous sets. Table
3.4 shows these results, where SCRs are classified as having one or more sets, depending on their
distance to the mean. In a scenario where there is no statistically significant difference between
the means, each HRC would have only one homogeneous set that contains all SRCs. In other
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Table 3.4: Number of Homogeneous Sets found by the Tukey-Kramer post-hoc test.

HRC Number of Sets
HRC01 6
HRC02 8
HRC03 13
HRC04 7
HRC05 4
HRC06 6
HRC07 11
HRC08 10
HRC09 11
HRC10 12
HRC11 12
HRC12 6

words, for this HRC, the results would be content-independent. If the number of homogeneous
sets is small and the sets are disjoint, we can extract the features of these groups that influence
the quality differences. Notice that HRC05 has fewer homogeneous sets (4) than the other HRCs.
HRC06 is the only HRC that has disjoint sets. But since most SCRs have more than one set, it is
not easy to identify a set of features that can distinguish the differences. It is necessary to conduct
further research to better understand how content (SRC) affects perceived quality.

3.6 RESULTS OF LABORATORY EXPERIMENTS

Since the reliability of crowd-sourcing methodologies remains questionable [158], we have also
carried out an experiment in a controlled laboratory environment and compared the results in
the two experiments. Eighteen participants took part in the experiment, 72% being male and
28% female. The age range of the participant ranged from 18 to 70 years. We used the same
experimental methodology and interface platform used in the crowd-sourcing experiment. The
experimental setup followed the ITU-R BT.500 recommendation [74]. Table 3.5 shows the te-
chnical specifications used in the experiment. An experimental session lasted, on average, 40
minutes.

A one-way analysis of variance (ANOVA) was used to compare the DMOS values of these two
groups of experimental results: the onsite (laboratory) and online (crowd-sourcing) experiments.
Table 3.6 shows these ANOVA results. The last column of the table indicates whether there is
a statistically significant difference between the two groups. More specifically, if p < 0.05 the
differences are statistically significant, and therefore the participants in the two experiments rated
the images enhanced with a particular HRC differently. We can see that for HRC07, HRC09,
and HRC12 participants in the two experiments rated the images differently, while for the other 9
HRCs, the differences are not statistically significant. Therefore, for most HRCs, there is no sta-
tistically significant difference between the DMOS given by the participants in both experiments.
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Table 3.5: Technical specifications of the equipment used for the Laboratory Experiment.

Item Specification
Monitor BENQ XL2420z 1920x1080 144hz
Distance of the observer 60 CM
GPU QUADRO K4000
Brightness 100%
Sharpness 50%

Table 3.6: ANOVA results comparing online and on-site groups.

HRC Group N Mean Std.dev F p

HRC01
OnSite 193 3.891 0.840

0.002 0.961
Online 1,255 3.888 .9430

HRC02
OnSite 196 3.515 .9844

1.344 0.247
Online 1,250 3.611 1.090

HRC03
OnSite 197 3.467 1.003

0.051 0.821
Online 1,250 3.486 1.138

HRC04
OnSite 197 4.015 0.854

0.060 0.806
Online 1,248 4.031 .849

HRC05
OnSite 197 4.015 .785

0.182 0.669
Online 1,249 3.988 0.839

HRC06
OnSite 201 2.408 1.146

1.525 0.217
Online 1,246 2.518 1.172

HRC07
OnSite 203 2.586 1.060

5.072 0.024
Online 1,244 2.795 1.2495

HRC08
OnSite 202 2.629 1.109

1.560 0.212
Online 1,246 2.742 1.204

HRC09
OnSite 203 2.542 1.044

8.176 0.004
Online 1,249 2.801 1.219

HRC10
OnSite 201 3.269 1.076

1.125 0.289
Online 1,247 3.362 1.166

HRC11
OnSite 196 2.913 1.131

2.990 0.084
Online 1,246 3.074 1.221

HRC12
OnSite 194 2.778 1.100

5.890 0.015
Online 1,252 3.008 1.245

3.7 CONCLUSIONS

In this work, we have built an image enhancement quality database, which is large and diverse.
We present a psychophysical study in which we analyze the perceptual quality of images enhan-
ced with different types of enhancement algorithms, including color, sharpness, histogram, and
contrast enhancement. A crowd-sourcing (online) psychophysical experiment was performed to
obtain quality scores for these images. We also conducted a controlled laboratory experiment
(onsite) and compared its results with the crowdsourcing (online) experiment. This database can
be used to train image quality metrics that can detect both increases and decreases in perceived
quality.

43



4 NO-REFERENCE UNDERWATER IMAGE QUALITY
ASSESSMENT METRICS

In this chapter, we present two quality metrics for underwater images. The first method uses an
adapted version of the multi-scale salient local binary pattern operator to extract image features
and a machine learning approach to predict quality. This method can be used to evaluate the
results of restoration techniques quickly and efficiently, opening up a new perspective in the
area of underwater image restoration and quality assessment. The second method is based on a
convolutional neural network. We train a CNN model using patches of underwater images. we
choose patches that are most perceptually relevant by incorporating the properties of the human
visual system, such as visual saliency. These selected patches are then fed to the CNN model for
quality estimation.

4.1 NR-UWIQA METRIC BASED ON MULTISCALE SALIENT LOCAL BINARY PAT-
TERNS OPERATORS

The first NR-UWIQA metric is based on a Multiscale Salient Local Binary Patterns (MSLBP)
operator [159]. More specifically, this method uses a variant of the local binary pattern (LBP) [160],
to extract features that are relevant to image quality. The LBP operator can be computed using
the following equation:

LP
R(Ic) =

P−1∑
p=0

σ(Ip, Ic)2
p, (4.1)

where I is an input image, Ic = I(x, y) is an arbitrary central pixel at position (x, y), Ip =

I(xp, yp) is a neighboring pixel surrounding Ic, and σ(u, v) is the step function given by:

σ(v, u) =

1, if v − u ≥ 0,

0, otherwise.
(4.2)

The points (x, y) are related to the neighboring points (xp, yp) as follows:

xp = x+R cos
(
2π

p

P

)
and yp = y −R sin

(
2π

p

P

)
.

In the above equations, p = {1, 2, · · · , P} is the number of neighboring pixels sampled from a
distance of R from Ic to Ip. Figure 4.1 describes the steps to apply the LBP operator on a single
pixel (Ic = 8) located in the center of an image block 3 × 3, as shown in the bottom left of this
figure. The numbers in the gray squares of the block represent the order in which the operator
is computed (clockwise direction, starting from 0). In this figure, we use a unitary neighborhood
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Figure 4.1: Example of LBP algorithm using R = 1, P = 8, Ic = 35, Ip = {71, 32, 91, 103, 21, 10, 34, 13}, and
L8
1(35) = 13 [2].

radius (R = 1) and eight neighboring pixels (P = 8).

After calculating σ(v, u) for each neighboring pixel Ip, we obtain a binary output for each Ip

(0 ≤ p ≤ 7), as illustrated in the block in the upper-left position of Figure 4.1. In this block,
the black circles correspond to “0” and the white circles to “1”. These binary outputs are stored
in binary format according to their position (gray squares). Then, the resulting binary number is
converted to decimal format. This decimal number is the output produced by LBP for Ic. Then,
we compute the LBP labels for all pixels of an image, obtaining the LBP maps. Instead of using
single values for R, P , MLBP generates multiscale LBP maps by varying the parameters R and
P and performing a symmetrical sampling. For a set of parameters R and P , the MLBP operator
computes the LBP labels of all pixels in an image and obtains a set of LBP maps (LP

R). In MSLBP,
the spatial features extracted by the MLBP operator are weighted by a saliency map generated by
a Boolean map saliency model (BMS) [161]. BMS saliency maps W(x, y) have values between 1
and 0, which represent the saliency value of the corresponding pixel in the underwater image. We
name each weighted map the salient local binary pattern (SLBP) map, while the weighted maps of
the MLBP maps are named multiscale SLBP (MSLBP) maps. The weighted features computed
for the MSLBP are used as input to a supervised machine learning algorithm that predicts the
final image quality score.

In this work, instead of using the BMS algorithm, we use the Graph-Based Visual Saliency
(GBVS) [93] model to generate the saliency maps W . Figure 4.2 shows samples of saliency
maps generated by the GBVS model using a few underwater images as input images. We chose
the GBVS model because it is a traditional model that is easy to execute and has a performance
similar to the BMS model proposed in the original MSLBP method [159]. The saliency maps W
are used to weigh each pixel of the MLBP maps LP

R. A feature vector is obtained by computing
the histogram of the LP

R maps weighted by the salience maps W . In particular, the histogram is
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Figure 4.2: Underwater images and their saliency maps.

Figure 4.3: Example of underwater images (a), their saliency maps (b), LBP maps (c)-(h), and SLBP maps (i)-(n).

generated as
HP

R = {hP
R(0), h

P
R(1), · · · , hP

R(P + 1)} (4.3)

where
hP
R(ϕ) =

∑
x,y

W(x, y) · δ(LP
R(x, y), ϕ), (4.4)

and

δ(v, u) =

1, if v = u,

0, otherwise.
(4.5)

The number of bins of this histogram is similar to the number of different labels in LP
R. So

each LP
R(i, j) can be represented by its weighted form, generating the map SP

R . Figures 4.3 (a)
and (b) depict the examples of the input images and their saliency maps, respectively. Figures 4.3
(c) to (h) depict examples of LBP maps obtained using different radius values (R) and different
numbers of neighboring points (P ). Figures 4.3 (i) to (n) show the SLBP maps generated from
W and their corresponding LP

R. In this work, we have used R = 1, 2, and 3 and P = 4, 8, and 16.
After generating the SLBP maps, we compute the different SLBP histograms H , as illustrated in
Figure 4.4. These histograms are concatenated to produce a feature vector for each underwater
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Figure 4.4: Multiple histogram generation from SLBP.

image as follows:
H = H4

1 ⊕H8
1 ⊕H4

2 ⊕H8
2 ⊕H16

2 ⊕ · · · ⊕HN
R , (4.6)

where ⊕ denotes the concatenation operator.

The computed feature vector H is supplied as input to a random forests (RFR) regression al-
gorithm to predict the quality of underwater images. We chose RFR because in previous studies it
has shown robust performance values [162] when compared to other machine learning algorithms
(neural networks, support vector machines, generalized linear models, etc.).

We used the UID-LEIA database for training and testing the proposed underwater IQA me-
tric. We used the Spearman’s Rank Order Correlation Coefficient (SROCC), Pearson’s Linear
Correlation Coefficient (PLCC), the Kendall Rank Correlation (KRCC), and Root Mean Square
Error (RMSE) as performance metrics. We compare the proposed methods with the following
publicly available underwater IQA methods: the Underwater Color Image Quality Evaluation
(UCIQE) [56] and the Patch-Based Mean Underwater Image Quality (PUIQ) [57]. Additionally,
we also compare our method with traditional NR-IQA methods: CORNIA [116], BRIQUE [119],
SSEQ [118], DIIVINE [121], NIQE [163], Choi et al. [164], and Balboa et al. [165]. The experi-
ments were carried out on a computer with an Intel Core i7-4790 processor at 3.60 GHz, running
an Ubuntu operating system. From the UID-LEIA dataset, 80% of the content is used for training
and 20% for testing. This 80-20 training-testing random split is performed 1,000 times, and then
the mean correlation is computed and reported.

Table 4.2 illustrates the performance comparison of the proposed method with other state-
of-the-art metrics on the UID-LEIA dataset. Notice that the proposed metric outperforms all
other metrics with respect to SROCC, PLCC, and RMSE values. The highest KRCC values are
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obtained using the NIQE metric. The values in bold correspond to the best performance, while
the results in italics correspond to the second-best results. These results show the advantage of
the proposed approach in terms of accuracy.

Table 4.1: Performance evaluation of MSLBP metric with different IQA methods on UID-LEIA dataset.

Type Method KRCC PLCC SROCC RMSE

NR-IQA
Methods

CORNIA 0.6502 0.4549 0.6394 32.1954
SSEQ 0.0247 0.0129 0.0199 35.7431

BRISQUE 0.1719 0.0998 0.1688 27.2345
DIIVINE 0.7038 0.5724 0.6958 25.5244

NIQE 0.9372 0.7258 0.9357 11.5852
Choi et al. [164] 0.6900 0.4679 0.6867 31.9258

Balboa et al. [165] 0.3958 0.2486 0.4138 35.2584
NR-IQA Methods

for Underwater
Images

UCIQE 0.9005 0.6854 0.8992 16.1584
PUIQ 0.5968 0.3589 0.6002 33.4852

MSLBP-UWIQA 0.8286 0.9502 0.9475 8.4735

4.2 NR-UWIQA METRIC BASED ON A CNN ARCHITECTURE THAT USES SALI-
ENT PATCHES

Figure 4.5: Block diagram of the MSLBP NR UWIQA method: (a) the process of selecting the most perceptually
relevant patches, (b) the process of computing the predicted quality score, (c) the adapted version of VSBIQA model.

In recent years, deep learning has achieved very good results in computer vision-related tasks
such as object detection, image recognition, and image segmentation. Many researchers applied
deep learning to underwater vision to solve the problem related to underwater image processing.
We have designed a deep learning NR-UWIQA metric, using a deep convolutional neural network
(CNN) architecture that takes into consideration the visual saliency of an underwater image. Fi-
gure 4.5 shows the block diagram of the proposed NR UW-IQA method. We use the VSBIQA
CNN architecture proposed by Li and Zou [101]. We chose this architecture for its good perfor-
mance in similar applications. The VSBIQA has a total of nine layers. The input layer takes as
input 32× 32 patches in RGB color format. The second, fourth, and sixth layers are convolution
layers, with stride sizes of 5×5, 3×3, and 3×3, respectively. The third, fifth, and seventh layers
are MaxPool layers of size 2 × 2. All layers are activated by a Rectified Linear Units (ReLU)
activation function. Despite its name, it is not linear and provides better performance by replacing
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Figure 4.6: (a) Examples of underwater images taken from the UID-LEIA dataset; (b) Saliency maps of (a); (c) Edge
maps of (a); and (d) Weighted maps of (b) and (c).

negative values with zeros. As shown in Figure 4.5(c), we have adapted the VSBIQA model so
that every MaxPool layer is followed by a Dropout layer with a rate value of 0.5. Due to the
limited size of the underwater image datasets, dropout layers are added to help reduce overfitting.

As shown in Figure 4.5(a), instead of processing a complete underwater image, the proposed
method selects the most perceptually relevant regions of each underwater image and crops that
region into small patches. The selected patches are then forwarded to CNN. To select the patches
that are most perceptually relevant, we computed (1) the salient areas of the image and (2) the
edges of the image. To compute the salient areas of the image, we use the SDSP bottom-up
visual attention model [166], which has low computational cost and good performance. The
SDSP algorithm has three main steps. First, it extracts features from the picture frames using
a band-pass filter. The frames are then converted to CIE L∗a∗b∗ and filtered using a log-Gabor
filter. Finally, all extracted features are combined to compute a saliency map. Figure 4.6(b) shows
the SDSP saliency maps of the underwater images in Figure 4.6(a). To extract the edges of the
image, we use the Canny algorithm [167] [168]. Figure 4.6(c) shows the Canny edge maps of the
underwater images in Figure 4.6(a).

Let SS(i, j) be the value of the saliency map at position (i, j), while TS(i, j) be the value of
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the edge map at the same position. We subdivide the saliency and edge maps into patches Pℓ of
size 32×32, as shown in Figure 4.5(a). The amount of saliency and edge information in the ℓ-th
patch is given by:

SSPℓ
=

∑
(i,j)∈Pℓ

SS(i, j),

TSPℓ
=

∑
(i,j)∈Pℓ

TS(i, j).
(4.7)

The relevance weight of the ℓ-th patch is defined as [101]:

WPℓ
= α · SSPℓ

+ β · TSPℓ
, (4.8)

where α and β are constant values that balance the contributions of saliency and edge information.
In this work, we tested several values for these constants and found that α = 0.4 and β = 0.6 [101]
provide a good representation between these two types of information. Figure 4.6(d) shows the
heatmaps images of the combined saliency and edge information of the underwater images in
Figure 4.6(a), where brighter colors correspond to more important areas and therefore acquire
higher weights. Heat maps are two-dimensional graphical representations of weights, where each
value of the matrix is displayed as a color. Higher weights are represented by lighter colors, where
lower weights are represented by dark colors, as shown in right-side vertical bar of Figure 4.6(d).

The patch selection process consists, first, of sorting all patches in decreasing order of WPℓ
and

then choosing the most relevant patches L. In this work, we used the highest weighted 256 patches
(L = 256) [169] of each underwater image, which is a good compromise in terms of complexity
and information representation [101]. As shown in Figure 4.5(b), the predicted quality score
corresponding to each underwater image (PQSUI) is obtained by computing a weighted average
of the predicted quality scores for each patch [101], as given by the following equation:

PQSUI =

∑L
ℓ=1 WPℓ

· PQSPℓ∑L
ℓ=1WPℓ

, (4.9)

where L is the number of selected patches, WPℓ
is the weight of the ℓ-th patch (Pℓ), and PQSPℓ

is the predicted quality score of Pℓ.

We compare the proposed methods with the following underwater IQA methods: (i) the Un-
derwater Color Image Quality Evaluation (UCIQE) [56] and (ii) the Patch-Based Mean Underwa-
ter Image Quality (PUIQ) [57]. Furthermore, we also compare our method with traditional NR-
IQA methods: (a) CORNIA [116], (b) BRIQUE [119], (c) SSEQ [118], (d) DIIVINE [121], (d)
NIQE [163], Choi et al. [164], and (e) Balboa et al. [165]. The experiments were carried out on
a PC with an Intel Core i7-4790 processor at 3.60GHz, running an Ubuntu operating system.

As mentioned before, in this work, we used the UID-LEIA dataset, which contains 135 distor-
ted underwater images. Although this is a small number of input samples for training a CNN, this
is the only data set that contains subjective quality scores ( mean opinion scores - MOS) associa-
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Figure 4.7: Training vs Validation Loss curves: (a) CNN performance on original data without adding dropout
layers, (b) CNN performance on original data after adding Dropout layers, (c) CNN performance without Dropout
on augmented data, and (d) CNN performance after adding Dropout layers on augmented data.

ted with each image. Therefore, this is one of the only datasets that can be used in the design of an
underwater quality metric. To increase the size of the training data, we augment the input samples
to achieve good performance without overfitting problems. More specifically, we used horizontal
flip, vertical flip, and four different shifts at the top-left, top-right, bottom-left, and bottom-right
corners of the images. In this way, we obtained 810 distorted underwater images.

To train and test CNN, we used the K-fold cross-validation approach that splits the dataset
into K consecutive folds. In our simulations, we set K = 10 and perform 10-fold simulations. In
each simulation, one fold is used as a test set, while the remaining K−1 = 9 folds are used as the
training set. After the 10-fold simulations, we report the mean correlation values. As mentioned
earlier, we selected at most 256 patches (L = 256) from each underwater image.

Figure 4.7 shows the performance loss results of the proposed method for different test sce-
narios. Figure 4.7(a) shows the training and validation loss curves obtained for the original CNN
architecture, without the dropout layers. The graph indicates an overfitting, since there is a large
difference between the train and validation loss curves. Figure 4.7(b) shows the loss curves when
we add dropout layers to the CNN architecture. Notice that the curves still show an overfitting
effect. Figure 4.7(c) shows the loss curves for the original CNN architecture (without adding
Dropout layers) with data augmentation. Notice that after 1000 epochs, the graph starts showing
some overfitting. Finally, Figure 4.7(d) shows the loss curves for the CNN architecture with dro-
pout layers and using data augmentation. This graph shows very close validation and train-loss
curves, indicating that there are no clear signs of overfitting.

Table 4.2 illustrates the performance comparison of the proposed method (CNN + dropout
layers trained on augmented data) with other state-of-the-art metrics in the UID-LEIA dataset.
Values in bold correspond to the best performance, whereas results in italics correspond to the
second-best results for the SROCC and PLCC columns. The highest PLCC value is obtained by
the M. Irshad et al. [62] metric, which is an algorithm based on ML, while the highest SROCC
values are obtained by the proposed method.

Figure 4.8 shows the box plot of average SRCC and PLCC values across 10-fold simulations
for all metrics. Since the authors of the UW-IQA methods did not publish their code, we compared
the results of 10-fold with only general purpose NR-IQA methods. For methods that are not based
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Table 4.2: Performance evaluation of proposed methods with different IQA methods on UID-LEIA dataset.

Type Method PLCC SROCC

General Purpose
NR-IQA
Methods

CORNIA 0.5463 0.6203
SSEQ 0.1134 0.1286

BRISQUE 0.2703 0.3325
DIIVINE 0.5302 0.6365

NIQE 0.5917 0.7227
Choi et al. [164] 0.4679 0.6867

Balboa et al. [165] 0.2486 0.4138

NR-UW-IQA Methods
UCIQE 0.6854 0.8992
PUIQ 0.3589 0.6002

ML and CNN Based
NR-UW-IQA Methods

MSLBP-UWIQA 0.9502 0.9475
CNN-SP-UWIQA 0.9426 0.9504

SSEQ BRISQUE NIQE DIIVINE CORNIA
Method
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Figure 4.8: Box plot of SROCC and PLCC results obtained by CNN-SP-UWIQA method on UID-LEIA dataset.

on training, we adopted the same split strategy, but considered only the 20% test set and discarded
the 80% train set. Notice that among all metrics, the SROCC and PLCC results provided by the
proposed method are the highest and have the smallest variation, which means that the results
of our method are very consistent. From Figure 4.8, it can be observed that the metrics SSEQ
and BRISQUE have shown the worst performance. For BRISQUE and DIIVINE, the boxes have
wide range area, which represents inconsistency in performance.

We analyze whether the selected patches with their corresponding weights (computed by com-
bining the saliency and edge maps in Equation 4.9 ) performed better than using all patches
without their weights. For this purpose, we performed an ablation test, in which we trained and
tested the model using all patches of underwater images without their weights. In other words, we
remove the block (a) from Figure 4.5. Table 4.3 shows the SROCC and PLCC values obtained,
which are significantly lower than the results shown in Table 4.2. In other words, using a model
with selected patches and their corresponding weights provides better performance than using all
patches without their weights.

Table 4.4 presents the time required to train and test the proposed method, using the UID-LEIA
dataset. We compare the time consumption with M. Irshad et al. method, which corresponds to
using a simple Random Forest regression algorithm. Notice that M. Irshad et al. method requires
61 seconds for pre-processing (loading images in RGB format), 3.1 minutes for training, and
0.3 seconds for testing the model. On the other hand, since the proposed method is based on
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Table 4.3: Comparison of CNN-SP-UWIQA model with a model processing all patches of underwater images without
their weights. Training/Test is performed on the UID-LEIA dataset.

Dataset Test Type SROCC PLCC

UID-LEIA
All patches

without their weights
0.8309 0.7914

Selected patches
with their corresponding

weights
0.9426 0.9504

Table 4.4: The time consumption of the proposed methods on UID-LEIA dataset.

Method
Pre-Processing

(seconds)
Training
(minutes)

Testing
(seconds)

MSLBP-UWIQA 61 3.1 0.3
CNN-SP-UWIQA 60 16 0.42

a multilayered convolutional neural network, it requires a slightly longer time for training and
testing, but a small amount of time is consumed for data reprocessing.

4.3 CONCLUSIONS

In this chapter, we have presented two quality metrics for underwater images. The first method
used an adapted version of the multiscale salient local binary pattern operator to extract image
features and a machine learning approach to predict quality. In the second method, we trained a
CNN model using patches of underwater images. we chose patches that were most perceptually
relevant by incorporating the properties of the human visual system. These selected patches were
then fed to the CNN model for quality estimation. The results show that the proposed metrics
are efficient and fast, and can be implemented in real time for different underwater image quality
applications.
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5 TESTING THE PROPOSED NR-UWIQA METRICS ON
REAL UNDERWATER IMAGES

This chapter discusses the development of an underwater image enhancement database. Underwa-
ter image enhancement has been attracting much attention due to its importance in sea exploration.
In recent years, many underwater image enhancement algorithms have been proposed to improve
underwater image quality. However, how to fairly compare the performance of underwater image
enhancement algorithms, comparing underwater image enhancement algorithms remains a diffi-
cult problem. The lack of a comprehensive subjective user study with a large benchmark dataset
and a reliable objective image quality assessment (IQA) metric has made it difficult to fully un-
derstand the actual performance of underwater image enhancement algorithms. In this work, we
aim to fill these gaps in both subjective and objective terms. First, we construct a new subjec-
tively annotated underwater image enhancement benchmark dataset (UIEB) that simultaneously
contains raw real underwater images, readily available enhancement results from representative
underwater image enhancement algorithms, and subjective evaluation results for each enhanced
underwater image. In the second part, we present an effective NR Underwater Image Quality
metric for automatically assessing the quality of enhanced underwater images.

5.1 GENERATION OF REAL UNDERWATER IMAGES

Underwater images are inevitably affected by wavelength-dependent absorption and scattering.
Consequently, raw underwater images usually suffer from various quality deficiencies such as co-
lor distortion, uneven illumination, reduced contrast and visibility, etc., which significantly affect
the performance of underwater application systems [170]. To alleviate these problems, numerous
underwater image enhancement (UIE) algorithms have been proposed in the literature. Howe-
ver, a difficult and unsolved problem is how to fairly compare the performance of different UIE
algorithms or evaluate the quality of the enhanced results. We believe that the performance com-
parison of existing work has obvious limitations. First, the qualitative comparison is not entirely
convincing because only a limited number of samples are presented and, more importantly, rese-
archers may select different samples for visual comparison. Second, the accuracy of the existing
quality metrics used for the quantitative comparison is not high. As shown in the experiments,
the existing objective quality metrics do not fully match the human subjective perception. There-
fore, a quantitative comparison using these metrics cannot accurately reflect the performance of
underwater image enhancement algorithms. Clearly, there is a need for a large-scale underwater
image enhancement dataset that can be used for a fair and comprehensive performance evaluation
of underwater image enhancement algorithms.

In the past few years, the use of machine learning and deep learning techniques to design
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image quality assessment methods has become extremely popular. To design a metric, we need a
ground-truth dataset to assess the quality of underwater images. In this work, we propose a new
database for the assessment of underwater image quality to advance research in this area. We
have taken enhanced real underwater images from the Underwater Image Enhancement Bench-
mark (UIEB) dataset [171] have diverse color ranges and degree of contrast. The corresponding
reference images are of relatively genuine color and have improved visibility and brightness. Fi-
gure 5.1 shows the reference underwater images. There are 200 real underwater images processed
with different enhancement algorithms in this collection. We present the perception study and de-
sign a subjective online experiment for the mean opinion score (MOS) of reference underwater
images. The results from MOS can be used to effectively test underwater image enhancement
algorithms and to develop underwater IQA metrics. This dataset can be freely downloaded and
used for scientific research.

Figure 5.1: Example of reference underwater images from UIEB dataset

55



5.1.1 A Crowdsourcing Experiment for Underwater Image Quality Assessment

To perform a crowdsourcing experiment, we have selected a Single Stimulus (SS) approach in
which the test images are randomly displayed. Then, observers are asked to rate the quality of the
displayed image using a category rating scale. This quality scale is known as the Absolute Cate-
gory Rating Scale (ACR). We conducted this subjective experiment online using the QuickEval
web platform [172]. We have chosen 200 real underwater images from the UIEB database, and
these images are enhanced by different enhancement algorithms. A total of 12 image enhance-
ment techniques are employed to generate the potential reference images, including nine underwa-
ter techniques that are fusion based [45], two-step-based [173], retinex-based [174], UDCP [175],
regression-based [176], GDCP [177], Red Channel [178], histogram prior [179] and blurriness-
based [51] two image dehazing methods that are DCP [180] and MSCNN [181] and one commer-
cial application for enhancing the underwater image is dive+8.

We chose to do the online experiment, although there is a debate on the conditions of the
online versus the offline experiment. The offline experiments are controlled, which is good for
reproducibility purposes, while there can be variations in screen resolution, lighting, and viewing
conditions during online experiments. Performing an online experiment allows for more and
more diverse observers, which is important for statistical significance of the data. For each test
stimulus, the SS experiment outputs a mean opinion score (MOS) value, which is computed by
taking the average of the ratings for all observers. Figure 5.2 shows the interface of the QuickEval
online system.

A total of 40 participants participated in the online subjective experiment, with 62% of the
participants being male and 38% being female. The average age of the participants was 32 for
males and 34 for females. To analyze the subjective data gathered, we computed the mean opinion
score (MOS).

5.1.2 Testing NR-IQA Metrics on the UIEB Dataset

To analyze the performance of general-purpose image quality metrics with respect to the MOS
obtained in subjective experiment for the UIEB dataset, we performed quantitative and qualitative
comparisons. For quantitative comparison, the performance comparison results of the original ob-
jective quality metrics in the UIEB dataset are summarized in Table 5.1. The results present the
correlation with respect to SROCC and PLCC between the MOS scores and the original objec-
tive quality metrics, and are computed by the basic image quality metrics SSIM [182], PSNR,
DIIVINE [121] and BRISQUE [119]. The results show that the DIIVINE method provides the
best performance in terms of SROCC (0.5138) and PLCC (0.4865), compared to the BRIQSUE,
SSIM, and PSNR methods. Both the BRISQUE and DIIVINE methods employ natural scene
statistics (NSS) from images, but BRISQUE works in the spatial domain, while DIIVINE works
in the frequency domain.

For a qualitative comparison, Figure 5.3 shows the scatter plots of all metrics to visually il-
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Figure 5.2: Interface of QuickEval subjective experiment system

Table 5.1: Objective quality evaluation of the UIEB dataset in comparison with image quality metrics.

Type Method PLCC SROCC

IQA Methods

BRISQUE 0.1733 0.2071
PSNR 0.2162 0.1927
SSIM 0.4044 0.4088

DIIVINE 0.5138 0.4865

lustrate the prediction ability of the objective quality metrics evaluated. The plots show similar
results, as described in Table 5.1, but all objective quality metrics individually are not good pre-
dictors for the UIEB dataset, as indicated by the wide spread of metric values in the fitted lines.
To elaborate, the blue asterisks in the scatter plots represent a paired measurement of two va-
riables (objective quality metric and MOS), while the red lines are the line of best fit of each
objective quality metric. If the distance between the blue asterisks and the red lines is far away
or nonlinear, it means that the variables are weakly correlated or not correlated. If the variables
are strongly correlated, the blue asterisks should cluster close to the red line. In other words, the
predicted performance of a quality metric with a tight scatter of data about the line of best fit will
be superior to that of a quality metric with a wider scatter.
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Figure 5.3: Scatter plots of all compared objective metrics on the UIEB dataset. The blue asterisks in the scatter
plots represent a paired measurement of two variables (Objective quality metric and MOS), while the red lines are
the fitted linear function on the UIEB dataset of each objective quality.

5.1.3 Testing the Proposed NR-UWIQA Metrics on the UIEB Dataset

In this section, we tested the two proposed metrics (MSLBP-UWIQA and CNN-SP-UWIQA) on
the UIEB datase. To increase the size of training data and achieve good performance without
overfitting problems, in this work we have used data augmentation techniques to increase the
number of input samples. More specifically, we used horizontal and vertical flips. In this way,
a total of 400 distorted underwater images are obtained. Another measure we took to avoid
overfitting is adding a Dropout layer to the CNN architecture.

For illustration, the performance of the CNN-SP-UWIQA metric, in Figure 5.4(b) shows the
SDSP saliency maps of underwater images in Figure 5.4(a), while in Figure 5.4(c) shows the
corresponding Canny edge maps of these underwater images. Figure 5.4(d) shows the heatmaps
images of the combined saliency and edge information of the underwater images in Figure 5.4(a),
where brighter colors correspond to more important areas and therefore acquire higher weights.

To train and test the CNN of the CNN-SP-UWIQA, we used the K-fold cross-validation
approach that splits the dataset into K consecutive folds. In our simulations, we set K = 10 and
perform 10-fold simulations. In each simulation, one fold is used as a test set, while the remaining
K − 1 = 9 folds are used as the training set. After the 10-fold simulations, we report the mean
correlation values. As mentioned above, we selected at most 256 patches (L = 256) from each
underwater image. For training the model, we used the following parameters: mini-batches of size
1, and mean squared error (MSE) as the training loss. Furthermore, the Adam optimizer [183]
is used to minimize the loss function. We initially set epochs to 6,000, and monitor the training
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Figure 5.4: (a) Examples of underwater images taken from the UIEB dataset; (b) Edge maps of (a); (c) Saliency
maps of (a); and (d) Weighted maps of (b) and (c).

Table 5.2: Performance evaluation of proposed methods with different IQA methods on UIEB dataset.

Type Method PLCC SROCC

General Purpose
IQA Methods

SSIM 0.4546 0.4815
BRISQUE 0.1263 0.1511

PSNR 0.2766 0.2413
DIIVINE 0.4860 0.4785

Proposed Methods
CNN-SP-UWIQA 0.9619 0.9356
MSLBP-UWIQA 0.6002 0.6618

loss by applying the early stopping method with 200 patience. We considered a dropout layer and
augmented data.

For the MSLBP-UWIQA method, we adopted the k-fold cross-validation strategy in which
k = 1000, and from the UIEB dataset, 80% of the content is used for training and 20% for
testing. This 80-20 training-testing random split is performed 1,000 times, and then the mean
correlation is computed and reported the average correlations. The experiments were carried out
on a PC with an Intel Core i7-4790 processor at 3.60GHz with 32 GB GPU, running an Ubuntu
operating system. All experiments are implemented using the Chainer framework in Python.

We compare the NR-UWIQA methods with the traditional FR and NR IQA methods: (a)
BRISQUE [119], (b) DIIVINE [121], (c) SSIM [182], (d) PSNR. Table 5.2 illustrates the perfor-
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Figure 5.5: Box plot of SROCC and PLCC results obtianed by CNN-SP-UWIQA method on UIEB dataset.

mance comparison of the proposed methods with the comparison metrics for the UIEB dataset.
We report the average correlations of 10-folds simulations using all comparison metrics on the
UIEB dataset. Values in bold correspond to the best performance with respect to the SROCC and
PLCC columns. According to the results, the proposed methods achieved the highest correlation
values on real underwater images.

Figure 5.5 shows the box plot of the average values of SROCC and PLCC in the 10-fold
simulations for all metrics. Note that among all metrics, the SROCC and PLCC UIEDresults
provided by the the CNN-SP-UWIQA metric are the highest and have the smallest variation,
which means that the results of our method are very consistent. In Figure 5.5, it can be seen that
the PSNR and BRISQUE metrics have shown the worst performance. Notice that the MSLBP-
UWIQA method, the SROCC and PLCC boxes have a wide range area, which represents an
inconsistency in performance.

Next, we take a closer look at the performance of the CNN-SP-UWIQA metric. First, we
analyze whether feeding the metric with only a selection of the most salient patches (computed
by combining the saliency and edge maps in Equation 4.8) results in better performance than
feeding all patches. For this purpose, we performed an ablation test, in which we trained and
tested the model using all patches of underwater images. In other words, we removed the block
(a) shown in Figure 4.5. We also performed a test in which we trained and tested the model after
removing the Dropout layer.

Table 5.3 shows the SROCC and PLCC values obtained for these tests, which shows that
the correlation values obtained using all patches are significantly lower than the results obtained
by selecting only the most salient patches. As mentioned earlier, the purpose of using saliency-
based information is to eliminate any redundancy, keeping only the information that the human
eye considers more relevant. Weighting the most salient regions (and therefore distortions) is a
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Table 5.3: Comparison of the proposed CNN-SP-UWIQA with a model of different variants. Training/Test is perfor-
med on the UIEB dataset.

Dataset Test SROCC PLCC

UIEB
All patches

(no selection)
0.7099 0.6861

Without
Dropout layer

0.4822 0.3250

Selected most
salient patches

0.9619 0.9356

Table 5.4: The time consumption of the proposed CNN-SP-UWIQA metric on UIEB dataset.

Method Pre-Processing
(seconds)

Training
(minutes)

Testing
(seconds)

MSLBP-UWIQA 92 0.22 0.05
CNN-SP-UWIQA 42 113 7.5

popular approach in image quality assessment, with several saliency-based image quality metrics
proposed over the past decade [184, 185]. Therefore, this result shows that a similar approach
can be used with CNN architectures for UWIQA methods. In other words, by creating a CNN
model that takes as input only selected salient patches, we provide the network with the most
perceptually relevant visual information, filtering out unimportant areas, and obtaining a better
accuracy performance. In Table 5.3, we also see that the model without the dropout layer diverges
and performance decreases. By adding the dropout layer, the model provides the best fit for the
test dataset.

Table 5.4 presents the running time required to train and test the NR-UWIQA method, using
the UIEB dataset. We compare the time consumption of CNN-SP-UWIQA with the time con-
sumption of the MSLBP-UWIQA method, which uses a simple Random Forest regression algo-
rithm. Note that the CNN-SP-UWIQA method takes less time to prepare input features. More spe-
cifically, the MSLBP-UWIQA method requires 92 seconds, while the CNN-SP-UWIQA method
requires 42 seconds for preprocessing. For training and testing, since the CNN method incorpo-
rates a multilayered convolutional neural network, its computational cost is higher compared to
the MSLBP-UWIQA method.

5.2 CONCLUSIONS

In this chapter, We have developed a UIEB database that is used for evaluating the performance of
underwater image quality assessment methods. To collect the subjective quality scores of UIEB
dataset, We performed a crowdsourcing experiment in which the observers were asked to rate
the quality of the displayed image using a category rating scale. We conducted this subjective
experiment online using the QuickEval web platform. We analyzed the performance of general-
purpose image quality metrics with respect to the MOS obtained in subjective experiment for the
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UIEB dataset. We also performed quantitative and qualitative comparisons.

We tested the proposed metrics (MSLBP-UWIQA and CNN-SP-UWIQA) on the UIEB data-
base. To train the CNN model we used the K-fold cross validation approach that splits the dataset
into K consecutive folds. In training, instead of feeding the model with patches selected randomly
from underwater images, we chose patches that were most perceptually relevant by incorporating
the properties of human visual system (HVS) name as edge and visual saliency. For the MSLBP-
UWIQA method, we adopted the k-fold cross-validation strategy in which k = 1000, and from
the UIEB dataset, 80% of the content is used for training and 20% for testing. The Performance
evaluations of proposed methods are good compared to general purpose IQA methods. Results
suggest the metric can be used in real-time to assess underwater image quality for a number of
applications, and that it is efficient and fast.
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6 CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

In this work, our goal was to investigate the quality assessment of the enhanced images. Image
enhancement algorithms have the goal of improving the image quality and, therefore, the use-
fulness of an image for a given task. Although there are several image enhancement algorithms,
there is no consensus on how to estimate the performance of these enhancement algorithms. Since
the final consumers of the resulting enhanced visual content are human viewers, the performance
of these algorithms should take into account the perceived visual quality of the resulting enhanced
images. Unfortunately, although in the last decades a lot of progress has been made in the area
of image quality assessment, designing metrics to estimate the quality of enhanced and restored
images remains a challenge. This is particularly true for underwater image application, where
images frequently need to be restored because of the severity of the degradations introduced by
the underwater environment. Therefore, there is a great need for quality metrics that can estimate
the quality of enhanced and restored images. In this thesis, our goal is to design metrics for this
scenario.

First, we presented a psychophysical / subjective study in which we analyzed the perceptual
quality of images that were enhanced with several types of enhancement algorithms, including
color, sharpness, histogram, and contrast. Specifically, we enhanced 35 source images obtained
from publicly available databases. Then, we performed a subjective experiment to assess the qua-
lity of the enhanced images. We used a Double Stimulus Continuous Quality Scale (DSCQS)
experimental methodology, with a between-subject approach where each subject scored a sub-
set of the total database to avoid fatigue. Given the large number of test images, we designed a
crowd-sourcing interface to perform an online subjective experiment. This type of interface has
the advantage of making it possible to collect data from many participants. We also performed an
experiment in a controlled laboratory environment and compared its results with the crowdsour-
cing results. Since there are very few quality enhancement databases available in the literature,
this work represents a contribution to the area of enhanced image quality.

Second, we have presented a lightweight no-reference (NR) underwater image quality as-
sessment evaluation metric for enhanced underwater images (NR-UWIQA), which is based on a
machine learning approach to predict quality and an adapted version of the multiscale salient local
binary pattern operator. The proposed metric was tested on the UID-LEIA database and presented
good accuracy performance when compared to other state-of-the-art methods. In summary, the
proposed NR-UWQIA method can be used to assess the results of restoration techniques quickly
and efficiently, opening up a new perspective in the area of underwater image restoration and
quality assessment.

Moreover, we present a lightweight no-reference (NR) underwater image quality assessment
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method based on convolutional neural networks (CNNs). We trained the CNN model using pat-
ches of underwater images. Instead of feeding the model with patches selected randomly from
underwater images, we chose patches that were most perceptually relevant by incorporating the
properties of human visual system (HVS) name as edge and visual saliency. These HVS pro-
perties helped to calculate the regions of interest that were used as training data. The proposed
method has greater efficiency and robustness. Experimental results on the underwater image da-
tabase demonstrate that our approach outperforms the state-of-the-art methods compared.

Furthermore, we developed a new subjectively annotated underwater image enhancement ben-
chmark dataset (UIEB) that simultaneously contains raw real underwater images, readily available
enhancement results from representative underwater image enhancement algorithms. For subjec-
tive evaluation we perform a crowdsourcing experiment, we have selected a Single Stimulus (SS)
approach in which the test images are randomly displayed. Then, observers are asked to rate
the quality of the displayed image using a category rating scale. This quality scale is known
as the Absolute Category Rating Scale (ACR). We conducted this subjective experiment online
using the QuickEval web platform. In the second part, we present an effective NR underwa-
ter image quality metric for automatically assessing the quality of enhanced underwater images.
We also analyzed the performance of general-purpose image quality metrics with respect to the
MOS obtained in subjective experiment for the UIEB dataset. We also performed quantitative
and qualitative comparisons.

We tested the proposed metrics (MSLBP-UWIQA and CNN-SP-UWIQA) on the UIEB data-
base. To train the CNN model we used the K-fold cross validation approach that splits the dataset
into K consecutive folds. In training, instead of feeding the model with patches selected randomly
from underwater images, we chose patches that were most perceptually relevant by incorporating
the properties of human visual system (HVS) name as edge and visual saliency. For the MSLBP-
UWIQA method, we adopted the k-fold cross-validation strategy in which k = 1000, and from
the UIEB dataset, 80% of the content is used for training and 20% for testing. The Performance
evaluations of proposed methods are good compared to general purpose IQA methods. Results
suggest the metric can be used in real-time to assess underwater image quality for a number of
applications, and that it is efficient and fast.

6.2 FUTURE WORK

In the first subjective experiment, we obtained a dataset of enhanced images with the correspon-
ding DMOS. As part of our future work, we intend to perform a statistical analysis using objective
quality metrics. Also, we are working on designing no-reference metrics specifically to assess the
quality of enhanced images.

Another possible future work is to propose a new deep neural network-based quality assess-
ment metric for underwater and enhanced images. In this work, we only consider convolutional
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neural networks. However, in real-world scenarios, different types of deep learning methods such
as atrous convolution layers, long- and short-term memory networks have produced good results
in predictions [186, 187, 188]. Therefore, it would be interesting to determine what features of
enhanced and underwater images can be used to detect and estimate the strength of these deep
learning methods.

Given the current benchmark of underwater enhanced images, there is a limitation of access.
To remove this obstacle, our future work includes to establish a dataset of underwater enhanced
images. Then, a subjective methodology will be carried out to obtain subjective quality scores
for every image. The dataset will serve as a motivation towards the development of more quality
metrics for this content media.
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Perceptual Quality Assessment of Enhanced Images Using a
Crowd-Sourcing Framework
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Abstract
In this work, we present a psychophysical study, in which, we
analyzed the perceptual quality of images enhanced with several
types of enhancement algorithms, including color, sharpness, his-
togram, and contrast enhancements. To estimate and compare
the qualities of enhanced images, we performed a psychophysical
experiment with 35 source images, obtained from publicly avail-
able databases. More specifically, we used images from the Chal-
lenge Database, the CSIQ database, and the TID2013 database.
To generate the test sequences, we used 12 different image en-
hancement algorithms, generating a dataset with a total of 455
images. We used a Double Stimulus Continuous Quality Scale
(DSCQS) experimental methodology, with a between-subjects ap-
proach where each subject scored a subset of the total database to
avoid fatigue. Given the high number of test images, we designed
a crowd-sourcing interface to perform an online psychophysical
experiment. This type of interface has the advantage of making
it possible to collect data from many participants. We also per-
formed an experiment in a controlled laboratory environment and
compared its results with the crowd-sourcing results. Since there
are very few quality enhancement databases available in the lit-
erature, this works represents a contribution to the area of image
quality.

Keywords: Enhancement; Perceptual Quality Assessment;
Crowd-Sourcing Framework, Subjective Quality Assessment.

Introduction
Image enhancement is frequently used to improve or restore

the visual quality of images and videos. Currently, there are sev-
eral image enhancement algorithms, but there is not yet a perfor-
mance metric that is able to estimate the performance of these
methods. Since the final consumers of the resulting enhanced
visual content are human viewers, the performance of these al-
gorithms should be measured by estimating the visual quality of
the enhanced images, taking into consideration the human visual
system [20].

Image quality can be estimated using subjective (psy-
chophysical experiments) and objective (quality metrics) meth-
ods [9, 21]. Subjective methods are simply psychophysical ex-
periments where participants rate one or more aspects of a set
of processed images. Most often, these experiments are per-
formed in a controlled environment (e.g. a laboratory), following
standard recommendations for the environment conditions and
experimental methodologies [6]. It worth pointing out that al-
though data (subjective scores) collected in psychophysical ex-
periments are considered as ground-truth, these experiments are
time-consuming and expensive. Objective quality methods, on

the other hand, are algorithms (implemented in hardware or soft-
ware) that automatically estimate the quality of an image [14, 10].
These methods are designed and tested using subjective scores as
ground-truth.

The area of image and video quality has achieved great
progress in the last decades [2]. But, although the performance
accuracy of quality metrics has improved, there are still many
challenges in this area. Among them is the design of objective
quality metrics for enhanced contents. Since most of the quality
metrics have been designed to capture visual distortions, they are
not able to quantify the changes in quality introduced by enhance-
ment algorithms. Therefore, currently, there is a need for quality
metrics that can automatically estimate the quality of enhanced
images and videos. It is worth pointing out that developing qual-
ity metrics for enhanced images is a challenge due to the lack of
quality databases containing enhanced images and their respective
(ground-truth) subjective quality scores.

In this paper, our goal is to introduce a quality database for
enhanced images. Up to our knowledge, currently, there is only
one image enhancement quality database that can be used for re-
search in image quality [19]. However, this database contains
images of low resolution that were processed manually, using a
professional graphics editing software (Adobe Photoshop) to pro-
duce the best possible enhanced images. In our database, we used
images of a higher resolution, which are enhanced with twelve
different image enhancement algorithms. Our goal was to pro-
duce a set of images that were like consumer applications con-
tents. Also, we performed a crowd-sourcing subjective experi-
ment to obtain quality scores for all database images. With this
experiment, we were able to obtain a large and diverse pool of
participants.

Database Content Generation
Figure 1 shows a block diagram of the strategy used to gener-

ate the database. Our first step was to choose 35 original (source -
SRC) images. These images were taken from three image quality
databases, to allow for future comparisons of enhanced and de-
graded images. More specifically, we took 5 SRC images from
the CSIQ database [18], 5 original images from the TID2013
database [16], and 25 original images from the ChallengeDB
database [3]. Table 6 (in the Appendix) shows a list of the SRC
images, along with their names in the corresponding databases.
These chosen source contents are diverse, in terms of spatial ac-
tivity, semantic content, and color distribution. In Figure 2, the
first row (SRCs) shows examples of SRC images taken from the
(a-b) TID2013, (c-d) CSIQ, and (e-f) ChallengeDB databases.

Our next step consists of choosing the enhancement algo-
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Abstract
Images acquired in underwater scenarios may contain severe dis-
tortions due to light absorption and scattering, color distortion,
poor visibility, and contrast reduction. Because of these degrada-
tions, researchers have proposed several algorithms to restore or
enhance underwater images. One way to assess these algorithms’
performance is to measure the quality of the restored/enhanced
underwater images. Unfortunately, since reference (pristine) im-
ages are often not available, designing no-reference (blind) im-
age quality metrics for this type of scenario is still a challenge.
In fact, although the area of image quality has evolved a lot in
the last decades, estimating the quality of enhanced and restored
images is still an open problem. In this work, we present a no-
reference image quality evaluation metric for enhanced under-
water images (NR-UWIQA) that uses an adapted version of the
multi-scale salient local binary pattern operator to extract im-
age features and a machine learning approach to predict quality.
The proposed metric was tested on the UID-LEIA database and
presented good accuracy performance when compared to other
state-of-the-art methods. In summary, the proposed NR-UWQIA
method can be used to evaluate the results of restoration tech-
niques quickly and efficiently, opening a new perspective in the
area of underwater image restoration and quality assessment.

Keywords: Underwater image enhancement; Image quality
assessment; Quality metrics, full-reference, no-reference; Un-
derwater image formation model; Saliency; Multiscale Salient
Local Binary Patterns;

Introduction
Underwater images are often characterized by a poor visibil-

ity since the light travelling in the water medium is attenuated and,
consequently, the captured scenes may be poorly contrasted and
hazy. More specifically, light attenuation is produced by absorp-
tion and scattering processes. Absorption removes the light en-
ergy while scattering changes the direction of the light. Therefore,
underwater images may have different types of degradations, in-
cluding limited-range visibility, non-uniform lightening, low con-
trast, blurring, diminished color, bright artifacts, and noise. In
other words, the visual aspect of underwater images may vary
a lot depending on the water medium’s characteristics, including
the types of particles present in the water and the water depth [26].
Figure 1 shows examples of images captured underwater in three
different scenarios: shallow water, deep water, and muddy water.
Notice that, generally, degradations of images captured underwa-
ter are stronger than degradations of images captured over-the-

air [39]. Often the quality of underwater images is not adequate
for the to be used by image and computer vision algorithms, re-
quiring the use of restoration or enhacement algorithms [39].

Given the importance of the overall quality of underwater-
captured images for ocean engineering and scientific research,
there are in the literature several methods for restoring or en-
hancing the quality of underwater images [16, 19]. Therefore,
the use of underwater images in computer vision and image pro-
cessing applications often depends on the success restoration and
enhancement algorithms [35, 3, 15]. To determine the perfor-
mance of these algorithms, we must estimate the quality of the
restored/enhanced images as perceived by human viewers. Unfor-
tunately, most methods used to estimate the performance of these
algorithms do not consider human perception or image quality.
One of the reasons is that subjective quality experiments, which
are considered as the ground truth in image quality research, are
costly and time-consuming [21]. Moreover, these methods are
unfeasible for real-time applications and system integration. One
viable option to estimate the quality of restored or enhanced un-
derwater images and, therefore, the restoration algorithm’s perfor-
mance is to use objective image quality assessment (IQA) meth-
ods.

IQA methods are algorithms capable of automatically esti-
mate the quality of an image. These methods can be divided into
three classes: (a) full-reference (FR) IQA methods, where a ref-
erence image is needed to estimate the quality; (2) reduced refer-
ence (RR) IQA methods, where partial information about the ref-
erence image is available; or (3) no-reference (NR) IQA methods,
which blindly estimate quality without having access to the refer-
ence or pristine image. For underwater images scenario, where a
reference image is not available, we must use NR-IQA methods to
estimate the perceptual quality of restored and degraded images.
IQA methods can be used to evaluate the restoration process’s
success and determine if the images are adequate for the target un-
derwater engineering and monitoring applications. So far, a few
researchers have proposed IQA methods specifically for under-
water images. For example, Sanchez et al. [37] have proposed a
restoration algorithm for underwater that uses an NR-IQA method
as a performance metric for the optimization algorithm.

Although in the last decades a lot of progress has been made
in the area of image quality assessment, designing metrics to esti-
mate the quality of enhanced and restored images remains a chal-
lenge [8]. As mentioned earlier, the final quality of underwater
images depend on the marine habitats where the images are cap-
tured, which often introduce specific chroma, saturation, and con-
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CNN-based no-reference video quality assessment
method using a spatiotemporal saliency

patch selection procedure

Sana Alamgeer ,* Muhammad Irshad, and Mylène C. Q. Farias
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Abstract. We propose a yet lightweight no-reference (NR) video quality assessment (VQA)
method, which uses a convolution neural network (CNN) architecture. The proposed method
implements a spatiotemporal saliency patch selection procedure that crops the frame into small
nonoverlapping blocks of images (patches) and selects the most perceptually relevant ones. The
selected patches are then forwarded to the CNN. To determine which patches are the most
relevant, spatial and temporal saliency features are computed for each frame. The proposed
method does not require subjective scores to train the CNN. It uses objective quality scores
as target quality scores for each video frame, which are computed using an NR image quality
assessment method. Given the lack of large annotated video quality databases, this is an ad-
vantage of the proposed method. Finally, although it has much smaller cost of data-processing,
compared with other state-of-the-art methods, the proposed NR-VQA obtains robust and com-
petitive results. © 2021 SPIE and IS&T [DOI: 10.1117/1.JEI.30.6.063001]

Keywords: video quality assessment; saliency; convolution neural network; objective quality
scores.
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1 Introduction

In the last decades, there has been a tremendous increase in the popularity of video applications,
with 82% of the internet traffic being currently video data.1 Since the success or popularity of a
video service is correlated to the quality of experience of the end user,2 it is often important to
assess the quality of the video signal at the client side, and the quality assessment is performed
using quality assessment methods.

Quality assessment methods are algorithms that estimate the quality of videos (VQA) or
images (IQA) either objectively or subjectively. Subjective quality assessment methods estimate
the quality of images/videos by performing psychophysical experiments, where participants
assign a score to each image/video. An estimate of the quality is given by the mean observer
score (MOS), which is computed by averaging the scores given to a test image/video by all
participants. Although subjective image/video quality assessment (VQA) methods are consid-
ered as ground-truth in image/video quality, these methods are expensive and time consuming.
Objective image/VQA methods, on the other hand, estimate the quality of image/video using
computational algorithms (quality metrics), which are faster, cheaper, and can be more easily
incorporated in a multimedia application. In this work, henceforth, we use acronyms IQA and
VQA to refer to objective image quality assessment (IQA) methods and video quality assessment
methods, respectively.

VQA methods can be classified as full-reference (FR), reduced-reference (RR), and no-
reference (NR) methods. FR VQA methods, which require the reference (pristine) content, are
frequently the best performing metrics.3 RRVQA methods require sending (or embedding) fea-
tures from the original content to the receiver/user,4 whereas NRVQA methods estimate quality
blindly without having access to the original.5 Unfortunately, both FR and RR metrics cannot
be used in real-time applications where the reference or even a small amount of the reference
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