
The Indigo Program-Verification Microbenchmark
Suite of Irregular Parallel Code Patterns

Yiqian Liu
Department of Computer Science

Texas State University
San Marcos, TX, US

y l120@txstate.edu

Noushin Azami
Department of Computer Science

Texas State University
San Marcos, TX, US

noushin.azami@txstate.edu

Corbin Walters
Department of Computer Science

Texas State University
San Marcos, TX, US

ckw79@txstate.edu

Martin Burtscher
Department of Computer Science

Texas State University
San Marcos, TX, US
burtscher@txstate.edu

Abstract—Irregular programs are found in many domains
and tend to exhibit input-dependent control flow and memory
accesses. This paper introduces the Indigo suite of important
irregular parallel code patterns for testing verification and other
tools. We studied many irregular CPU and GPU programs and
extracted the key code patterns. Then, we methodically built
variations of these patterns to alter the control-flow and memory-
access behavior and/or introduce bugs, yielding the thousands
of OpenMP and CUDA microbenchmarks in the suite. Indigo
includes a set of generators to systematically create an unbounded
number of inputs for each microbenchmark, which is essential to
exercise the wide range of possible behaviors of input-dependent
codes. To manage the millions of code and input combinations,
Indigo provides the flexibility to generate user-defined subsets of
the suite. Experiments with a subset of buggy and bug-free codes
illustrate that irregular programs pose a significant challenge to
both static and dynamic program verification tools. Moreover,
such tools can perform quite differently across code patterns
that contain the same bug.

Index Terms—benchmark design, parallel computing, irregular
programs, software verification

I. INTRODUCTION

Many computational problems are irregular in nature, mean-
ing their control flow or memory accesses do not follow simple
patterns. This irregularity often arises from processing pointer-
based data structures like graphs that are used to represent real-
world objects such as road networks. Irregular algorithms can
be found in many domains, including social networking [1],
data mining [2], artificial intelligence [3], and compilers [4].
Since many important applications are irregular, it is crucial to
understand, support, and exploit the behaviors of these codes.

Every serial and parallel program has a degree of control-
flow and memory-access irregularity [5]. Control-flow ir-
regularity typically stems from while loops whose iteration
count is difficult to predict. Visiting the neighbors of graph
vertices is an example as each vertex may have a different
number of neighbors. In contrast, regular codes like dense

This research was supported in part by the National Science Foundation
under award No. 1955367 and by an equipment donation from NVIDIA Corp.

matrix multiplication tend to be based on for loops with fixed
iteration counts. Memory-access irregularity typically stems
from pointer-chasing operations where the address of the next
access is difficult to predict. Again, visiting a vertex’s neigh-
bors is an example because the neighbors are rarely located
in consecutive memory locations. In contrast, regular codes
tend to perform strided memory accesses. For instance, the
elements of a vector reside at consecutive memory addresses.

Since the control-flow and memory-access patterns of ir-
regular code are generally input dependent and tend to change
during program execution, the observed behavior for one input
or time slice may not be representative of the behavior of
the same code for a different input or time slice [5], making
bug detection more difficult. Parallelism often exacerbates the
problem as the relative timing behavior of the threads may
change from run to run. Their data dependency can make
irregular programs more challenging to analyze, optimize,
verify, and parallelize than regular codes.

The growing importance of irregular applications is reflected
in recent benchmark suites. Whereas many of the suites listed
in Table I contain breath-first search (an irregular code), the
older suites mostly consist of regular codes. Only some of the
more recent suites focus on irregular programs. However, all of
them comprise just a handful of codes and inputs in total since
they are performance benchmark suites. Thus, our community
would greatly benefit from a more extensive set of programs
and inputs that exhibits the wide range of behaviors possible
in irregular codes. Such a suite could help programmers, tool
developers, computer architects, and researchers design soft-
ware and hardware that can better handle irregular programs.

To drive the design of program verification tools, for which
irregular codes are particularly challenging, it is important to
also include common bugs. Except for DataRaceBench, such
defective codes are absent from the benchmark suites in Ta-
ble I, which lists the name, number of programs, release year,
whether it is mostly irregular, and the parallel programming
model of each suite.

TABLE I
SELECTED BENCHMARK SUITES

Suite Codes Year Irreg Models
PARSEC [6] 12 2008 No OMP, Pthreads, TBB
Lonestar [7] 22 2009 Yes C++, CUDA
Rodinia [8] 23 2009 No OMP, CUDA, OCL
SHOC [9] 25 2010 No CUDA, OCL
Parboil [10] 11 2012 No OMP, CUDA, OCL
PolyBench [11] 30 2012 No CUDA, OCL
Pannotia [12] 13 2013 Yes OCL
GAPBS [13] 6 2015 Yes OMP
graphBIG [14] 12 2015 Yes OMP, CUDA
Chai [15] 14 2017 No AMP, CUDA, OCL
DataRaceBench [16] 168 2017 No OMP, Fortran
GARDENIA [17] 9 2018 Yes OMP (target), CUDA
GBBS [18] 20 2020 Yes Ligra+

As a remedy, we designed Indigo, a parallel CPU and GPU
suite of common irregular code patterns. Its goal is to provide
the community with a systematic means to analyze irregularity
in detail, expose potential bugs, study complex control-flow
and memory-access behavior, and evaluate parallelization,
optimization, and verification strategies on irregular programs.

To create Indigo, we studied the irregular codes in Lonestar
and other suites, extracted the key patterns, generalized them,
and methodically built variations thereof, including some with
the types of bugs we have encountered when implementing our
own irregular codes. The resulting codes are microbenchmarks,
i.e., they are small, simple, and not full-fledged applications.
For this reason, we do not recommend Indigo as a performance
benchmark suite. However, being small is advantageous for
static program analysis tools and cycle-accurate simulators that
tend to be slow when analyzing or simulating large programs.
In fact, all of the codes have a runtime that is linear in the
number of vertices and edges. Version 0.9 of Indigo, upon
which this paper is based, contains 1084 CUDA and 636
OpenMP microbenchmarks, including 628 CUDA and 324
OpenMP codes with bugs.

Due to the input-dependent nature of irregular codes, it is
essential to also provide many different inputs (graphs). Rather
than including predetermined inputs, Indigo comes with a set
of graph generators that allow the user to create an unbounded
number of inputs. To support systematic and exhaustive testing
of the microbenchmarks, one generator emits all possible
directed and/or undirected graphs with a user-specified number
of vertices. Additionally, Indigo includes generators for power-
law graphs [19], k-dimensional grids and tori [20], uniform
distribution graphs [21], etc.

Each microbenchmark can be run with all generated inputs
to elicit a wide variety of runtime behaviors. However, running
all 1720 microbenchmarks on just the 4096 possible directed
4-vertex graphs1 would result in 7,045,120 tests, which is
probably too many for most use cases. After all, assuming
each test takes one second, it would take close to three months
to run the entire suite. Moreover, some users may not be
interested in the buggy codes, others may only care about the

1Note that we may not want to eliminate isomorphic graphs as vertex
permutations result in different threads and warps processing a specific vertex.

CUDA programs, and yet others may want to study undirected
graphs exclusively. To facilitate these and other use cases,
Indigo generates not only the inputs but also the desired
microbenchmarks based on a simple configuration file. This
file can be edited to enable or disable various filters, thus
allowing users to create any wanted subset of the suite. Indigo
includes sample configuration files to build various subsets.

This paper makes the following main contributions.
• It presents the Indigo suite with 1720 input-dependent

CUDA and OpenMP codes as well as an unbounded
number of inputs for each code.

• It introduces a new type of benchmark suite that generates
desired program variations and inputs on the user side.

• It describes six fundamental dwarf-like code patterns that
frequently occur in parallel graph applications.

• It explains how Indigo methodically generates variations
of code patterns, including planting bugs in them.

• It illustrates, based on hundreds of thousands of exper-
iments, that irregular codes pose a significant challenge
to many program verification tools.

The Indigo suite is available in open source at https://cs.
txstate.edu/∼burtscher/research/IndigoSuite/.

The rest of this paper is organized as follows. Section II
reviews relevant background information. Section III summa-
rizes related work. Section IV describes the design of the
Indigo suite in detail. Section V discusses the experimental
methodology. Section VI evaluates several CPU and GPU
program verification tools on buggy and bug-free Indigo codes.
Section VII summarizes the paper and draws conclusions.

II. BACKGROUND

This section provides background information on the used
graph format and presents an irregular code example.

A. CSR Graph Format

The Compressed Sparse Row (CSR) format is one of the
most widely used graph representations [22]. For example,
Pannotia [12] and Lonestar [7] use CSR inputs. All Indigo
graph generators produce graphs in this format, meaning that
every generated graph can be used as an input for any Indigo
code. Basing Indigo on the CSR format makes it easy for users
to import their own graphs and means that preexising and real-
world (non-synthetic) graphs can also be used as inputs.

B. Irregular Code Example

Determining the connected components (CCs) of a directed
graph G(V,E) is an important computation that can be imple-
mented in different ways. One way is through push-style label
propagation as outlined in Algorithm 1. First, the label of each
vertex, label, is made unique by initializing it to the vertex ID
(lines 1 to 3). Then, for each vertex v (line 7), all neighbors in
the adjacency list adj are visited (line 8) and processed. The
processing (lines 9 to 12) updates each neighbor’s label with
the label of v if v’s label is larger. Whenever a label is updated,
the flag updated is set (line 11). The algorithm iterates until no
more updates occur (line 5). Upon termination, all vertices in

the same CC will have the same label, and vertices in different
CCs will have different labels.

Algorithm 1 Label-propagation-based connected components
Input: Graph G = (V,E)

1: for all vertices v ∈ V do
2: label[v]← v
3: end for
4: updated← true
5: while updated do
6: updated← false
7: for all vertices v ∈ V do
8: for all neighbors n ∈ adj[v] do
9: if label[n] < label[v] then

10: label[n]← label[v]
11: updated← true
12: end if
13: end for
14: end for
15: end while
Output: Label of each vertex in G

Note that this label propagation algorithm is input dependent
and has both control-flow (e.g., line 8) and memory-access
(e.g., line 10) irregularity. It is impossible to statically predict
the iteration count of the inner for loop without knowing the
input graph. Similarly, it is impossible to statically predict the
order in which the elements of the label array will be written
unless we know the complete input graph.

III. RELATED WORK

Many benchmark suites exist. They target a plethora of dif-
ferent program behaviors, application domains, programming
languages, etc. The early suites that focus on parallel programs
mainly comprise regular high-performance computing (HPC)
applications. One of the first regular suites not focusing on
HPC is PARSEC [6], released in 2008. However, since the
irregular benchmark suites published so far are performance
rather than verification suites, none of them include enough
inputs to elicit a wide range of distinct program behaviors.

DataRaceBench [16] is a relatively recent suite of regular
programs designed to evaluate CPU data-race detection tools.
It includes a set of kernels, some of which contain bugs. It
comes with a script to evaluate Helgrind, Archer, ThreadSan-
itizer, Intel Inspector, and Coderrect Scanner. Verma et al.
enhanced the suite by adding kernels that represent additional
patterns and include FORTRAN code [23]. Program verifica-
tion is also the target of Indigo, which supports OpenMP and
CUDA, includes more bug types, inputs, and code versions,
and provides customizable code and input generators.

With accelerators becoming popular, quite a few benchmark
suites now include GPU code. The Rodinia [8] suite targets
heterogeneous systems. It exhibits different types of paral-
lelization, memory-access and data-communication patterns,
synchronization, and power consumption. The SHOC [9] suite

is designed to test the performance and stability of hetero-
geneous systems. Parboil [10] is a suite for evaluating the
throughput of a range of applications, which can be used by
programmers as a baseline to improve upon and/or for task-
parallel programs. The Chai [15] suite evaluates the shared
virtual memory, memory coherence, and system-wide atomics
of heterogeneous systems as well as data- and task-based
workload partitioning between the CPU and GPU.

There are several tools that target GPU program verification.
GKLEE [24] searches for correctness and performance bugs in
GPU codes. It includes 40 benchmarks that cover many CUDA
program behaviors and issues such as thread divergence, bank
conflicts, deadlock, and data races. GPUVerify [25] comes
with a suite of 163 CUDA and OpenCL kernels drawn
from public and commercial resources. Barracuda [26] is a
concurrency bug detector for CUDA programs. It handles a
wide range of parallelism constructs including branch oper-
ations, low-level atomics, and memory fences. It includes a
concurrency bug suite with 53 programs, 12 of which have
data races. Since essentially no verification suites with buggy
GPU codes exists, all of these tools include their own.

The above mentioned benchmarks mostly contain regular
programs. However, a growing number of suites focus on
parallel irregular codes. Lonestar [7] contains C++ and CUDA
implementations of iterative graph algorithms. Since it is
the largest collection of irregular codes, we used it as the
main source for extracting the irregularity patterns found in
Indigo. Pannotia [12] is an OpenCL suite of applications for
studying graph algorithms on GPUs. It includes 8 applications.
GraphBIG [14] contains implementations of representative
data structures, workloads, and data sets from 21 real-world
use cases of multiple application domains. GAPBS [13] not
only specifies graph kernels, input graphs, and evaluation
methodologies but also provides optimized reference im-
plementations. GARDENIA [17] is a benchmark suite for
studying irregular graph algorithms on massively parallel
accelerators. It includes 9 workloads from graph analytics,
sparse linear algebra, and machine learning. GBBS [18] is
a C++ suite of scalable, provably-efficient implementations
of graph problems for shared-memory multicore machines.
It extends the Ligra interface with additional primitives and
clearly defined cost bounds. All of these benchmark suites
include full-fledged graph codes. In contrast, Indigo comprises
important code patterns that are not complete algorithms.

There are also benchmark suites for other parallel program-
ming languages such as Go. Tu et al. analyzed the causes,
detection, and fixes of 171 concurrency bugs from 6 popular
Go software applications [27]. GoBench [28], the first suite for
Go concurrency bugs, was introduced in 2021. It contains 82
real bugs from 9 open source applications and 103 bug kernels.
It covers traditional and Go-specific concurrency issues. It uses
configuration files in json format that record the type of bugs
and describe how to generate the corresponding Docker files.
Similarly, the configuration file used by Indigo defines the
types of codes and inputs to be included in the generated suite.

The source code annotation and variation of CREST [29]

and DLBENCH [30] inspired the code generation process in
Indigo. DLBENCH consists of a kernel generator, a profiler,
and a performance analyzer to generate parameterized vari-
ants of a synthetic microbenchmark. CREST is a software
framework that analyzes dependencies among GPU threads
and performs source-level restructuring. It uses source-code
annotations in the code restructurer to control optimizations.

In addition to focusing on common irregular code patterns,
the main differences between Indigo and other benchmark
suites are the much larger number of codes, the much higher
number of inputs (which is important for data-dependent
codes), and the support for creating user-defined subsets of the
suite through configurable code and graph generators. Between
the thousands of codes and the unbounded number of inputs,
Indigo allows users to run millions of distinct tests and to
create subsets for many different usage scenarios.

IV. INDIGO DESIGN

The primary goal of Indigo is to enable the systematic ex-
ploration of key parallel irregular code patterns. As mentioned,
most existing suites do not focus on irregular programs. The
few that do contain dozens of full-fledged graph kernels, each
with just a few inputs, making them not particularly useful
for systematic studies. Moreover, these suites do not contain
buggy codes, making them unsuitable for program verification.
Hence, we set out to create our own benchmark suite.

A. Graph Types

Since the behavior of irregular codes is data dependent, we
may need a large number of inputs for each microbenchmark
to elicit a wide variety of control-flow and memory-access-
pattern combinations. Rather than providing a fixed set of
inputs, we opted to include graph generators that allow the
user to create any desired number of inputs. Importantly, one
of the generators creates all possible directed and undirected
graphs for a given number of vertices. The resulting graphs
necessarily cover all corner cases that could appear in a
real-world graph in this size range, making systematic and
exhaustive testing possible. Since the number of possible
graphs grows exponentially with the number of vertices, this
generator cannot be used to create graphs with many vertices.
Hence, we also included other generators to produce specific
types of graphs with larger vertex counts. All generated inputs
use the CSR format so that every microbenchmark can use all
of them. Indigo includes the following graph generators.

• All possible graphs: this generator works by enumerating
all possible adjacency matrices.

• Binary forests: this generator repeatedly picks a childless
vertex and randomly assigns it an unvisited left child,
right child, both, or none.

• Binary trees: this generator visits every vertex and ran-
domly assigns it an unvisited left and/or right child.

• Capped maximum-degree graphs: this generator assigns
up to k random edges to each vertex.

• Directed acyclic graphs (DAGs): this generator assigns a
random priority to each vertex and then creates random
edges connecting higher- to lower-priority vertices.

• k-dimensional grids: this generator links each vertex to
the next vertex in all dimensions.

• k-dimensional tori: this generator works like the grid
generator but also connects the last vertex to the first
vertex in all dimensions.

• Power-law graphs: this generator permutes the vertex list
and then picks a source and destination vertex for each
edge following a power-law distribution.

• Random neighbor graphs: this generator assigns a single
random neighbor to each vertex.

• Simple planar graphs: this generator creates a random
binary tree and links the internal nodes at the same level.

• Star graphs: this generator picks one random vertex and
adds edges from that vertex to all other vertices.

• Uniform-distribution graphs: this generator is similar to
the power-law generator but uses a uniform distribution.

Where applicable, the generators produce three versions of
each graph: undirected, directed, and counter-directed (with
the edge directions reversed). Figure 1 shows possible grids
and tori that can be generated, and Figure 2 shows examples
of the remaining supported graph types.

0

1

3 2

4

0

1

3 2

4

0

1

3 2

4

0

1

3 2

4
(1) 1D grid (2) Counter 1D grid (3) Undirected 1D grid

2

3

1 4

0
(4) 1D random grid

2

3

1 4

0
(5) Counter 1D random grid

2

3

1 4

0
(6) Undirected 1D
random grid

0

1

3 2

4

0

1

3 2

4

0

1

3 2

4

4

2

3 1

0
(7) 1D torus (10) 1D random

torus
(8) Counter 1D
torus

(9) Undirected
1D torus

4

2

3 1

0
(11) Counter 1D
random torus

4

2

3 1

0
(12) Undirected 1D
random torus

3

1

4 5

7
(13) 2D grid

0 2

6 8

3

1

4 5

7
(14) Counter 2D
grid

0 2

6 8

3

1

4 5

7
(15) Undirected
2D grid

0 2

6 8

1

2

5 6

8
(16) 2D random grid

7 4

0 3

1

2

5 6

8
(17) Counter 2D
random grid

7 4

0 3

1

2

5 6

8
(18) Undirected 2D
random grid

7 4

0 3

3

1

4 5

7

(19) 2D torus

0 2

6 8

3

1

4 5

7

(20) Counter 2D
torus

0 2

6 8

3

1

4 5

7

(21) Undirected
2D torus

0 2

6 8

1

2

5 7

8

(22) 2D random
torus

7 4

0 3

1

2

5 7

8

7 4

0 3

1

2

5 7

8

7 4

0 3

(23) Counter 2D
random torus

(24) Undirected
2D random torus

Fig. 1. Generated grid and torus inputs

Each generator takes a parameter that specifies the number
of vertices. Some take a second parameter that specifies the
maximum degree of the capped maximum-degree graph or
the number of edges of the DAG, power-law, and uniform-
distribution graphs. For the binary tree, torus, grid, random-
neighbor, and star graphs, the number of edges is determined
by the number of vertices. For the binary forests and the simple
planar graphs, the number of edges is determined dynamically.

B. Major Code Patterns

As we are interested in common patterns of irregular codes,
we conducted an extensive study of many irregular parallel
C++ and CUDA programs, including programs from the

0

1

3 2

4
(1) Binary tree (2) Counter binary tree (3) Undirected binary tree

0

1

3 2

4

0

1

3 2

4

0

1

3 2

4
(4) DAG (5) Counter DAG

0

1

3 2

4

0

1

3 2

4
(6) Binary forest (7) Counter binary forest (8) Undirected binary

forest

0

1

3 2

4

0

1

3 2

4

0

1

3 2

4
(9) K max
degree

0

1

3 2

4
(10) Counter k
max degree

0

1

3 2

4
(11) Undirected k
max degree

0

1

3 2

4
(12) Random
neighbor

0

1

3 2

4
(13) Counter random
neighbor

0

1

3 2

4
(14) Undirected
random neighbor

0

2

1 3

4
(15) Power law

0

2

1 3

4
(16) Counter
power law

0

2

1 3

4
(17) Undirected
power law

0

1

3 2

4
(18) Simple
planar

(19) Counter simple
planar

(20) Undirected simple
planar

0

1

3 2

4

0

1

3 2

4

0

1

3 2

4
(21) Star

0

1

3 2

4
(22) Counter star

0

1

3 2

4
(23) Undirected star

0

1

3 2

4
(22) Uniform
distribution

0

1

3 2

4
(23) Counter uniform
distribution

0

1

3 2

4
(23) Undirected uniform
distribution

Fig. 2. Different types of generated input graphs

Lonestar and other suites. We then generalized the extracted
patterns and narrowed them down to the following six major
patterns. We gave them names to simplify the discussion.

• Conditional-vertex pattern: this code pattern updates a
shared memory location if the neighbors of a vertex meet
some condition. For example, in Lonestar, the k-clique
and clustering codes read the neighbors’ data (e.g., the
cluster ID) and update a shared variable (e.g., the size of
the cluster with the largest ID).

• Conditional-edge pattern: this code pattern updates a
shared memory location if the edges of a vertex meet
some condition. For example, in Lonestar, the triangle
counting updates a global scalar if the edge is in an un-
explored triangle, and the maximum cardinality bipartite
matching adds the edge into a matching set if it does not
share end points with any edges in the set.

• Pull pattern: this code pattern updates a vertex-private
memory location based on some neighbors’ data. E.g.,
graph coloring in Pannotia reads the neighbors’ colors
and SSSP in Lonestar reads the neighbors’ distances.

• Push pattern: this code pattern updates a shared memory
location in some neighbors based on vertex-private data.
For example, page rank in Pannotia transfers the pagerank
value to the neighbors, and the maximal independent set
code in Lonestar marks the neighbors as ‘out’ of the set.

• Populate-worklist pattern: this code pattern conditionally
places vertices (or edges) in unique but contiguous ele-
ments of a shared array. For example, BFS in Pannotia
dynamically maintains a worklist of the vertices at the
same level, and SSSP in Lonestar adds and removes
vertices from the worklist depending on their distance.

• Path-compression pattern: this code pattern traverses par-
tially shared paths and updates some vertices on the path.
For example, the spanning tree and connected compo-
nents codes in Lonestar use it in union-find operations.

The path-compression pattern is less frequent than the other
five patterns but still occurs in several irregular algorithms. We
included this pattern because it is the only common pattern we
found that not only accesses direct graph neighbors but also the
neighbors’ neighbors, etc. The resulting six patterns represent
key low-level “dwarfs” of irregular graph codes [31].

0

1

2 3
write

write

0

1

2 3
write

write

read

read

(b) conditional-edge
pattern

(a) conditional-vertex
pattern

0

1

2 3

read

read
0

1

2 3

write

write

(c) pull pattern (d) push pattern

0

1

2 3

write write

indexing

0 3

(e) populate-worklist
pattern

(f) path-compression
pattern

read

1

global scalar

global array

2

read

read

read

read

read

read

read

Fig. 3. Major irregular code patterns

Figure 3 visualizes each pattern. Squares represent shared
global memory locations, circles denote graph vertices and
vertex-local locations, solid lines are graph edges and edge-
local locations, and dashed arrows track data flow. Red sig-
nifies shared write locations, blue demarcates shared read
locations, yellow indicates non-shared write locations, and
green marks non-shared read locations. The dashed circles
outline two active vertices [32] that are processed in parallel.

The figure highlights potential sharing issues. The condi-
tional edge pattern accesses a single shared read-modify-write
location. The conditional vertex pattern does the same but also
accesses multiple shared read-only locations. The pull pattern
only accesses multiple shared read-only locations. The push
pattern accesses multiple shared read-modify-write locations.
The populate-worklist pattern accesses a single shared read-
modify-write location as well as a single shared write-only
array in which each element is written at most once. The path-
compression pattern accesses multiple shared locations that
are read and some of which are then written. In all cases that
involve multiple shared locations, the memory accesses are
indirect. Moreover, all six patterns include non-shared indirect
accesses to the adjacency lists.

C. Pattern Variations

From each major pattern, we methodically create varia-
tions along several dimensions (where applicable). The first
dimension is the data type of the shared memory locations.
Indigo currently includes the following six types: signed 8-
bit integers, unsigned 16-bit integers, signed 32-bit integers,
unsigned 64-bit integers, 32-bit floats, and 64-bit doubles.

The second dimension is the neighbors being accessed.
Indigo can process the adjacency lists in the following six
ways: only the first neighbor, only the last neighbor, all
neighbors in the forward direction, all neighbors in the reverse
direction, the first few neighbors until a condition is met, and
the last few neighbors until a condition is met. Although it
does occur, accessing only the first or last neighbor is not very
common. We still included these versions as they represent
important corner cases (for example for bounds checks).

The third dimension is making the updates of the shared
memory locations conditional. This increases the complexity,
e.g., when trying to detect data races or out-of-bounds array
accesses, because it introduces (additional) data-dependent
control flow and makes the memory accesses more irregular.

The fourth dimension is inserting common bugs. We focus
on two types: out-of-bounds memory accesses and synchro-
nization errors. The out-of-bounds bugs involve going over the
end of either of the two CSR arrays. The synchronization bugs
involve making operations non-atomic that must be atomic,
inserting performance-enhancing guards that introduce data
races, and removing necessary barriers.

The fifth and final dimension is employing different parallel
schedules. On the OpenMP side, this involves using a static
or dynamic assignment of work to the threads. On the CUDA
side, it involves assigning one vertex or multiple vertices to
each processing entity (i.e., using persistent threads [33]),
where a processing entity is a thread, a warp, or a block.

The five dimensions are orthogonal and can be combined
in any way. Moreover, the bugs (in the fourth dimension) are
independent of each other and any combination thereof can be
present in the same code. Together, these combinations result
in the thousands of microbenchmarks in Indigo.

D. Annotation Tags

Implementing a benchmark suite containing thousands of
codes by hand is nearly impossible and not maintainable.
Instead, we wrote just six source files per major pattern and
express all variations in form of annotation tags. These tags
are similar to the annotation comments in the Java Modeling
Language (JML) [34]. Indigo automatically generates the
OpenMP and CUDA codes from these annotated source files.

Listing 1 provides an excerpt of an annotated CUDA kernel.
We use the syntax “/*@tag@*/” without the quotes to separate
alternative statements on a line of code. Each annotated line
can either be the code before the first tag, between the first
and second tag, etc., or after the last tag. Tags with different
names on different lines are independent and all combinations
can be generated. For example, the alternatives before and

after the ‘reverse’ tag will be combined with the alternatives
before (empty) and after the ‘break’ tag, resulting in four
versions. However, tags on different lines with the same name
are dependent, meaning the same alternative will be used on
all lines with the same tag names. For example, lines 2, 3,
and 13 will all use their first, middle, or last alternative, thus
only resulting in three versions. Together, the tags in Listing 1
express a total of 12 versions of this kernel. Listing 2 shows the
version that is generated when the ‘persistent’ tag is enabled
and all other tags are disabled. Note that the tag names are
arbitrary strings that can be compared for equality.

1 int idx = threadIdx.x + blockIdx.x * blockDim.x;
2 int i = idx; /*@persistent@*/ /*@boundsBug@*/ int

i = idx;
3 if (i < numv) { /*@persistent@*/ for (int i = idx;

i < numv; i += gridDim.x * blockDim.x) {
/*@boundsBug@*/

4 int beg = nindex[i];
5 int end = nindex[i + 1];
6 for (int j = beg; j < end; j++) { /*@reverse@*/

for (int j = end - 1; j >= beg; j--) {
7 int nei = nlist[j];
8 if (i < nei) {
9 atomicAdd(data1, (data_t)1); /*@atomicBug@*/

data1[0]++;
10 /*@break@*/ break;
11 }
12 }
13 } /*@persistent@*/ } /*@boundsBug@*/

Listing 1. Excerpt of Indigo source file for generating 12 versions of
the conditional-edge pattern

1 int idx = threadIdx.x + blockIdx.x * blockDim.x;
2 for (int i = idx; i < numv; i += gridDim.x *

blockDim.x) {
3 int beg = nindex[i];
4 int end = nindex[i + 1];
5 for (int j = beg; j < end; j++) {
6 int nei = nlist[j];
7 if (i < nei) {
8 atomicAdd(data1, (data_t)1);
9 }

10 }
11 }

Listing 2. One resulting CUDA version of the conditional-edge pattern

1 int beg = nindex[i];
2 int end = nindex[i + 1];
3 data_t val = 0;
4 for (int j = beg + threadIdx.x; j < end; j +=

blockDim.x) {
5 val = max(val, data2[nlist[j]]);
6 }
7 val = __reduce_max_sync(˜0, val);
8 if (lane == 0) s_carry[warp] = val;
9 __syncthreads(); /*@syncBug@*/

10 if (warp == 0) {
11 val = s_carry[lane];
12 val = __reduce_max_sync(˜0, val);
13 if (lane == 0) {
14 /*@guardBug@*/ if (data1[0] < val) {
15 atomicMax(data1, val); /*@atomicBug@*/ data1

[0] = max(data1[0], val);
16 /*@guardBug@*/ }
17 }
18 }

Listing 3. Excerpt of Indigo source file illustrating bug insertion

We use the tags to enable pattern variations, including
inserting bugs. There are five different types of bugs. They
are ‘atomicBug’, ‘boundsBug’, ‘guardBug’, ‘raceBug’, and
‘syncBug’. We introduce them by removing necessary syn-
chronization or allowing access past the end of an array. For
example, the ‘boundsBug’ on line 3 of Listing 1 enables out-
of-bound memory accesses by allowing the index i to exceed
the array size on lines 4 and 5. The ‘syncBug’ on line 9 of
Listing 3 removes a needed block-level barrier, the ‘guardBug’
on line 14 introduces a data race, and the ‘atomicBug’ on line
15 makes an update to a globally shared location non-atomic.

We believe it is important for the generated codes to be
human readable. Thus, Indigo does not use synthetic variable
names. It also automatically indents the code, which is nec-
essary when variations introduce or remove if statements, and
eliminates blank lines due to empty tags. The file name of each
microbenchmark is the pattern name followed by all enabled
tags to make it easy to identify which file contains which code.

E. Subset Selection

The large number of microbenchmarks and graphs in Indigo
yields over a million possible combinations, which may take
too long to run. Therefore, the suite provides the flexibility to
generate user-defined subsets of the programs and inputs. This
is done through two levels of configuration files. We chose this
approach to simplify the subset selection for most users.

The first level is a master list of allowable parameter settings
for each graph generator, including the range of graph sizes.
It is meant for experienced users who can add and remove
any valid parameter settings they like. Since editing this list
requires knowledge about the parameters each graph generator
takes, we opted to hide it from novice users.

The second level is a much simpler configuration file that
we think anyone can easily understand and modify. It filters
out unwanted code versions and input types and sizes. For ex-
ample, the user can select to only generate bug-free codes and
directed graphs with between 10 and 12 vertices. TACO [35]
similarly creates tensor algebra kernels based on user-defined
constraints. In this way, an Indigo user can generate a small
subset for quick testing and later a more extensive subset to
perform a detailed study.

The configuration file comprises one section to manage
the code generation and another section to manage the graph
generation as shown in Listing 4. Both sections consist of a
number of rules, each specifying a set of selections.

1 CODE:
2 bug: {hasbug}
3 pattern: {pull, populate-worklist}
4 option: {only_atomicBug}
5 dataType: {int, float}
6

7 INPUTS:
8 direction: {all}
9 pattern: {˜star}

10 rangeNumV: {0-100, 2000}
11 rangeNumE: {0-5000}
12 samplingRate: 50%

Listing 4. Sample configuration file

For ease of use, Indigo’s configuration file lists all possible
choices for each rule in form of a comment. These choices
are also shown in Tables II and III. The shorthand notation
“all” means all possible choices will be generated. The symbol
“∼” inverts the meaning of the selection. For example, “∼star”
means all graph types except for star graphs. Prefixing a choice
with “only ” as in “only atomicBug” means no other bug
type can be present. There are no specific choices for the
last three rules pertaining to the input generation. Instead,
the user needs to provide one or multiple values or ranges
of values. The sampling rate further controls the number of
graphs generated and must be a single value. For example, a
50% rate means half of the graphs that meet the other four
rules in the input section will actually be generated. Since the
code and graph generators are deterministic, they will always
produce the same suite for a given configuration regardless of
what machine the generators run on. Indigo includes several
example configuration files for building various small and
large subsets. Users can choose the default, one of four
provided, or their own filter to generate a subset.

TABLE II
CHOICES FOR MANAGING THE CODE GENERATION

Rule Choices
Bug all, hasbug, nobug

Pattern all, conditional-vertex, conditional-edge, pull, push,
populate-worklist, path-compression

Option all, atomicBug, boundsBug, guardBug, raceBug, syncBug,
break, cond, dynamic, last, persistent, reverse, traverse

Data type all, int, char, double, float, long, short

TABLE III
CHOICES FOR MANAGING THE GRAPH GENERATION

Rule Choices
Direction all, directed, undirected

Pattern

all, DAG, k max degree, power law,
uniform degree, all possible graphs,

binary forest, binary tree,
k dim grid, k dim torus,

rand neighbor, simple planar, star
Sampling rate value between 0% and 100%

V. EXPERIMENTAL METHODOLOGY

We used version 0.9 of Indigo to evaluate the verification
tools listed in Table IV. ThreadSanitizer [36] is a dynamic
data-race detector for C/C++ programs and is part of Clang 3.2
and gcc 4.8. Archer [37] is a data-race detector for OpenMP
codes that combines static and dynamic techniques.

CIVL is a verification platform for parallel C programs.
Its intermediate language, CIVL-C, employs a general model
of concurrency that can represent OpenMP, CUDA, MPI, and
Pthreads programs. CIVL includes front-ends to translate code
to CIVL-C and a back-end that uses symbolic execution and
model-checking techniques to verify CIVL-C programs.

Cuda-memcheck is a correctness checking suite for CUDA.
It includes the memory access error and leak detection tool
Memcheck [38], the shared memory data access hazard detec-
tion tool Racecheck [39], the unitialized global memory access

TABLE IV
TESTED VERIFICATION TOOLS

Tool Version OpenMP CUDA
ThreadSanitizer [36] 9.3.1 Yes No
Archer [37] 2.0.0 Yes No
CIVL [42] 1.20 Yes Yes
Cuda-memcheck [43] 11.4.0 No Yes

detection tool Initcheck [40], and the thread synchronization
hazard detection tool Synccheck [41].

The system we used for running the OpenMP codes has
dual 10-core 3.1 GHz Xeon E5-2687W v3 CPUs. The CUDA
codes were executed on a GeForce GTX Titan X GPU with
3072 processing elements in 24 multiprocessors. We ran the
OpenMP experiments with 2 and 20 threads. For the CUDA
experiments, we launch 2 blocks with 256 threads per block.

The operating system is Fedora 30, and the GPU driver ver-
sion is 450.66. We used gcc 9.3.1 with the “-O3 -march=native
-fopenmp” switches to compile the OpenMP codes and nvcc
11.0 with the “-O3” switch to compile the CUDA codes.

To keep the running times manageable, we excluded all
data types other than 32-bit signed integers. This yielded 692
microbenchmarks. 254 are OpenMP and 438 are CUDA codes,
including 146 OpenMP and 274 CUDA codes with bugs. We
ran each of them with 209 generated graphs. These inputs
comprise all possible undirected graphs ranging from 1 to 4
vertices and all other types of supported graphs with 29 and
773 (729 for the grids and tori) vertices. In total, we executed
106,172 tests for ThreadSanitizer and Archer as well as 91,542
tests for each Cuda-memcheck tool. Being a static tool, CIVL
only verifies each code once. Since it can take a long time
to analyze a microbenchmark, we only specified 2 threads for
the CIVL OpenMP experiments.

As out-of-bound accesses may result in an infinite loop with
the Racecheck tool, we do not use it on codes with this type of
bug. Excluding it does not affect the results because none of
the Indigo codes with this bug use the GPU’s shared memory.

To evaluate each tool, we measured the four counts shown
in Table V to produce a confusion matrix. A tool generates a
false positive (FP) if it reports a non-existing bug. If it correctly
detects an existing bug, it is a true positive (TP). It is a true
negative (TN) if the tool does not detect any bug in a bug-
free program. If it fails to detect an existing bug, it is a false
negative (FN). Note that, for a bug-free program, a tool can
only generate either an FP or TN result. Similarly, it can only
generate either a TP or FN result for a buggy program.

TABLE V
CONFUSION MATRIX

Bug-free code Buggy code
Positive report False positive (FP) True positive (TP)
Negative report True negative (TN) False negative (FN)

To make the results easier to understand, it is common to
convert them into the three higher-is-better metrics accuracy
(A), precision (P), and recall (R), which are defined as
follows: A = (TP + TN)/(TP + FP + TN + FN),
P = TP/(TP + FP), R = TP/(TP + FN). The accuracy

reflects the probability that the tool produces a correct report,
the precision denotes the probability of correctly detecting a
bug out of all positive reports, and the recall measures the
probability of detecting a bug within all buggy codes.

VI. RESULTS

Table VI lists the raw counts we obtained for each evaluated
tool. Table VII shows the corresponding accuracy, precision,
and recall. The numbers in parentheses reflect the thread count.

TABLE VI
ABSOLUTE POSITIVE AND NEGATIVE COUNTS FOR EACH TOOL

Tool Bug-free codes Buggy codes
FP TN TP FN

ThreadSanitizer (2) 5,317 17,255 14,829 15,685
ThreadSanitizer (20) 6,565 16,007 18,103 12,411
Archer (2) 2,587 19,985 8,471 22,043
Archer (20) 21,744 828 29,689 825
CIVL (OpenMP) 0 108 18 128
CIVL (CUDA) 0 164 64 210
Cuda-memcheck 0 34,276 17,406 39,860

TABLE VII
RELATIVE METRICS FOR EACH TOOL

Tool Accuracy Precision Recall
ThreadSanitizer (2) 60.4% 73.6% 48.6%
ThreadSanitizer (20) 64.2% 73.4% 59.3%
Archer (2) 53.6% 76.7% 27.8%
Archer (20) 57.4% 57.7% 97.2%
CIVL (OpenMP) 49.6% 100.0% 12.1%
CIVL (CUDA) 52.1% 100.0% 23.4%
Cuda-memcheck 56.4% 100.0% 30.4%

The ThreadSanitizer and Archer results depend on the num-
ber of threads. They both have better accuracy and especially
recall but lower precision with more threads. Since they are
dynamic tools, they benefit from larger thread counts, which
increase the chances of a bug manifesting itself, yielding a
higher number of true positives. However, a larger number of
threads also increases the observed interleavings and thus the
analysis complexity, resulting in more false positives. Thread-
Sanitizer mostly outperforms Archer because we included an
option in ThreadSanitizer to suppress bug detection outside of
the parallel target kernel. Archer does not have such an option.

CIVL does not report any false positives, resulting in
perfect precision. However, its accuracy and especially its
recall are lower than those of Archer and ThreadSanitizer.
This is due to CIVL still being under active development.
It does not yet support several features that appear in our
microbenchmarks, including “atomic capture” and “reduction”
pragmas in OpenMP as well as atomic, warp-vote, and warp-
shuffle functions in CUDA. Moreover, every microbenchmark
with a missing atomic operation results in an internal CIVL
error for the OpenMP codes2. For now, we count codes that
use unsupported operations as negative results.

Cuda-memcheck also does not produce any false positives,
yielding a perfect precision. Its accuracy and recall are better
than CIVL’s but mostly worse than ThreadSanitizer’s and
Archer’s. Note, however, that we are comparing results from
CUDA and OpenMP codes, only some of which are equivalent.

2We reported this bug (and the missing features) to the authors of CIVL.

A. Data-race Detection

Since ThreadSanitizer and Archer were designed for de-
tecting data races, we provide results for just race detection
in Table VIII. A false positive means the tool reports a data
race but the program is race-free, though it may contain other
types of bugs. Table IX shows the corresponding metrics.

TABLE VIII
RESULTS FOR DETECTING JUST OPENMP DATA RACES

Tool No data races Has data races
FP TN TP FN

ThreadSanitizer (2) 6,764 23,332 12,196 10,794
ThreadSanitizer (20) 9,408 20,688 14,995 7,995
Archer (2) 3,497 26,599 6,009 16,981
Archer (20) 27,338 2,758 21,819 1,171

TABLE IX
METRICS FOR DETECTING JUST OPENMP DATA RACES

Tool Accuracy Precision Recall
ThreadSanitizer (2) 66.9% 64.3% 53.0%
ThreadSanitizer (20) 67.2% 61.4% 65.2%
Archer (2) 61.4% 63.2% 26.1%
Archer (20) 46.3% 44.3% 94.8%

When detecting data races in the regular codes of the
DataRaceBench suite [16], the accuracy, precision, and recall
are 54.2%, 55.1%, and 95% for ThreadSanitizer and 83.3%,
91.2%, and 77.5% for Archer. Hence, Archer performs better
on almost all metrics on regular codes. ThreadSanitizer has a
lower accuracy and precision on the regular codes, which may
be because we used the aforementioned suppression flag, but
a higher recall. Overall, we find irregular codes to be at least
as challenging as regular codes when detecting data races.

Interestingly, the results vary substantially between the six
main code patterns. Table X shows the metrics of ThreadSan-
itizer with 20 threads split by pattern. There are no variations
of the pull pattern in Indigo that contain data races. Evidently,
the path-compression and the conditional-edge pattern make
it easy to detect data races. In contrast, the conditional-vertex
and especially the push pattern make it much harder. This
highlights the importance of not only the multiple patterns but
also including the same bug in each of them, that is, system-
atically creating variations of the irregular code patterns.

TABLE X
THREADSANITIZER METRICS FOR DETECTING JUST OPENMP DATA RACES

IN DIFFERENT CODE PATTERNS

Pattern Accuracy Precision Recall
Conditional-vertex pattern 49.9% 49.9% 70.8%
Conditional-edge pattern 88.4% 99.8% 76.9%
Push pattern 43.3% 44.7% 56.1%
Populate-worklist pattern 69.6% 99.1% 39.5%
Path-compression pattern 96.5% 100.0% 89.5%

Cuda-memcheck can only detect data races in the GPU’s
shared memory but not in global memory. Hence, we only
show results for detecting races in shared memory. Table XI
lists the counts. Table XII shows the corresponding metrics.

The Racecheck tool in Cuda-memcheck does not yield any
false positives when detecting data races in shared memory. Its
accuracy and precision are very high. Moreover, its accuracy

TABLE XI
CUDA-MEMCHECK COUNTS FOR DETECTING JUST CUDA DATA RACES IN

SHARED MEMORY

Tool No data races Has data races
FP TN TP FN

Cuda-memcheck 0 86,976 3,304 5,016

TABLE XII
CUDA-MEMCHECK METRICS FOR DETECTING JUST CUDA DATA RACES IN

SHARED MEMORY

Tool Accuracy Precision Recall
Cuda-memcheck 98.1% 100% 65.8%

and recall are roughly twice their counterparts in Table VII,
indicating that the Racecheck tool performs quite a bit better
on our codes than some of the other tools in Cuda-memcheck.

B. Memory-error Detection

CIVL and Cuda-memcheck support detecting memory ac-
cess errors. Tables XIII and XIV list the corresponding counts
and metrics. Neither tool produces any false negatives. Note
that an out-of-bound access only happens for some of the input
graphs. Yet, both tools perform quite well on our CUDA codes.

TABLE XIII
COUNTS FOR DETECTING JUST MEMORY ACCESS ERRORS

Tool No boundsBug Has boundsBug
FP TN TP FN

CIVL (OpenMP) 0 190 16 48
CIVL (CUDA) 0 326 64 48
Cuda-memcheck 0 68,134 14,102 9,306

TABLE XIV
METRICS FOR DETECTING JUST MEMORY ACCESS ERRORS

Tool Accuracy Precision Recall
CIVL (OpenMP) 81.1% 100% 25.0%
CIVL (CUDA) 89.0% 100% 57.1%
Cuda-memcheck 89.8% 100% 60.2%

Again, the results vary quite a bit between the code patterns.
Table XV shows the metrics for CIVL with 2 OpenMP threads.
We did not evaluate any path-compression codes with out-of-
bounds memory accesses. In the pull pattern, CIVL detects all
memory errors perfectly. However, in the conditional-vertex,
push, and populate-worklist patterns, it detects none of them.
This again illustrates the need for including the same bug in
different irregular code patterns when testing verification tools.

VII. SUMMARY AND CONCLUSIONS

Irregular programs tend to be data dependent, meaning that
different inputs can result in very different runtime behavior.
This paper presents Indigo, the first benchmark suite designed
to enable extensive studies of such dynamic behavior in
OpenMP and CUDA codes and to systematically exercise tools
like program verifiers, compilers, and architectural simulators.
Indigo is available at https://cs.txstate.edu/∼burtscher/research/
IndigoSuite/.

To create the suite, we extracted the most important dwarf-
like code patterns from parallel graph analytics applications.
We implemented Indigo to methodically generate hundreds

TABLE XV
CIVL METRICS FOR DETECTING JUST OPENMP OUT-OF-BOUND ERRORS

IN DIFFERENT CODE PATTERNS

Pattern Accuracy Precision Recall
Conditional-vertex pattern 75% 100% 0%
Conditional-edge pattern 87.5% 100% 50%
Pull pattern 100% 100% 100%
Push pattern 75% 100% 0%
Populate-worklist pattern 66.6% 100% 0%

of variations of each pattern, including some with planted
bugs. We call the resulting codes “microbenchmarks”. Indigo
comes with generators that can produce an unbounded number
of inputs for each microbenchmark, including all possible
graphs with k vertices for systematic and exhaustive testing.
Combining the thousands of codes with just as many inputs
yields millions of distinct combinations to elicit a vast number
of program behaviors. To control this number, Indigo allows
the user to generate subsets of the code variations and inputs
via their own or one of the provided configuration files.

We employed such a subset of over 100,000 experiments to
evaluate several parallel-program verification tools. Our results
show that bug detection tends to be more difficult in irregular
codes than in regular codes. For example, ThreadSanitizer and
Archer can detect 95% and 77.5% of the data races in the
‘race-yes’ regular programs from the DataRaceBench suite.
However, on our short irregular codes, they only correctly
detect 65.2% and 26.1% of the data races and produce false
positives on many race-free programs. Moreover, we found
the quality of these tools to vary greatly between different
irregularity patterns. This highlights the need for including a
variety of code patterns in irregular benchmark suites as well
as the importance of including the same bug in different codes,
that is, the importance of systematically creating variations of
code patterns. We hope that our work will inspire others to
build similar benchmark suites for additional domains.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, Ganesh Gopalakrish-
nan, Stephen Siegel, Tanmay Tirpankar, and Alexander Wilton
for their help and feedback to improve this paper.

REFERENCES
[1] S. A. Myers, A. Sharma, P. Gupta, and J. Lin, “Information network or

social network? the structure of the twitter follow graph,” in Proceedings
of the 23rd International Conference on World Wide Web, 2014, pp.
493–498.

[2] D. J. Cook and L. B. Holder, “Graph-based data mining,” IEEE
Intelligent Systems and Their Applications, vol. 15, no. 2, pp. 32–41,
2000.

[3] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Het-
erogeneous graph neural network,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 793–803.

[4] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba, M. Brookhart,
A. Chakraborty, W. Constable, C. Convey, L. Cook, O. Kanawi et al.,
“Intel ngraph: An intermediate representation, compiler, and executor
for deep learning,” arXiv preprint arXiv:1801.08058, 2018.

[5] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on gpus,” in 2012 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2012, pp. 141–151.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the

17th international conference on Parallel architectures and compilation
techniques, 2008, pp. 72–81.

[7] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali, “Lonestar:
A suite of parallel irregular programs,” in 2009 IEEE International
Symposium on Performance Analysis of Systems and Software. IEEE,
2009, pp. 65–76.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 2009, pp. 44–54.

[9] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous
computing (shoc) benchmark suite,” in Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, 2010,
pp. 63–74.

[10] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, vol. 127, 2012.

[11] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a high-level language targeted to gpu codes,” in 2012
innovative parallel computing (InPar). Ieee, 2012, pp. 1–10.

[12] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding irregular gpgpu graph applications,” in 2013 IEEE In-
ternational Symposium on Workload Characterization (IISWC). IEEE,
2013, pp. 185–195.

[13] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[14] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Graphbig:
understanding graph computing in the context of industrial solutions,”
in SC ’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2015, pp.
1–12.

[15] J. Gómez-Luna, I. El Hajj, L.-W. Chang, V. Garcı́a-Floreszx, S. G.
De Gonzalo, T. B. Jablin, A. J. Pena, and W.-m. Hwu, “Chai: Collabo-
rative heterogeneous applications for integrated-architectures,” in 2017
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2017, pp. 43–54.

[16] C. Liao, P.-H. Lin, J. Asplund, M. Schordan, and I. Karlin,
“Dataracebench: a benchmark suite for systematic evaluation of data
race detection tools,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2017, pp. 1–14.

[17] Z. Xu, X. Chen, J. Shen, Y. Zhang, C. Chen, and C. Yang, “Gardenia:
A graph processing benchmark suite for next-generation accelerators,”
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 15, no. 1, pp. 1–13, 2019.

[18] L. Dhulipala, J. Shi, T. Tseng, G. E. Blelloch, and J. Shun, “The
graph based benchmark suite (gbbs),” in Proceedings of the 3rd Joint
International Workshop on Graph Data Management Experiences &
Systems (GRADES) and Network Data Analytics (NDA), 2020, pp. 1–8.

[19] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: an approach to modeling networks.” Journal
of Machine Learning Research, vol. 11, no. 2, 2010.

[20] L. Wang, W. Jie, and J. Chen, Grid computing: infrastructure, service,
and applications. CRC Press, 2018.

[21] S. R. Blackburn and S. Gerke, “Connectivity of the uniform random
intersection graph,” Discrete Mathematics, vol. 309, no. 16, pp. 5130–
5140, 2009.

[22] J. Dongarra, “Compressed row storage,” http://www.netlib.org/utk/
people/JackDongarra/etemplates/node373.html, accessed: 2021-7-3.

[23] G. Verma, Y. Shi, C. Liao, B. Chapman, and Y. Yan, “Enhanc-
ing dataracebench for evaluating data race detection tools,” in 2020
IEEE/ACM 4th International Workshop on Software Correctness for
HPC Applications (Correctness). IEEE, 2020, pp. 20–30.

[24] G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. P.
Rajan, “Gklee: Concolic verification and test generation for gpus,” in
Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 215–224.
[Online]. Available: https://doi.org/10.1145/2145816.2145844

[25] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson, “Gpuver-
ify: a verifier for gpu kernels,” in Proceedings of the ACM international
conference on Object oriented programming systems languages and

applications, 2012, pp. 113–132.
[26] A. Eizenberg, Y. Peng, T. Pigli, W. Mansky, and J. Devietti, “Barracuda:

Binary-level analysis of runtime races in cuda programs,” in Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2017, pp. 126–140.

[27] T. Tu, X. Liu, L. Song, and Y. Zhang, “Understanding real-world con-
currency bugs in go,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 865–878.

[28] T. Yuan, G. Li, J. Lu, C. Liu, L. Li, and J. Xue, “Gobench: A
benchmark suite of real-world go concurrency bugs,” in 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
IEEE, 2021, pp. 187–199.

[29] S. Unkule, C. Shaltz, and A. Qasem, “Automatic restructuring of
gpu kernels for exploiting inter-thread data locality,” in International
Conference on Compiler Construction. Springer, 2012, pp. 21–40.

[30] A. Qasem, A. M. Aji, and G. Rodgers, “Characterizing data organization
effects on heterogeneous memory architectures,” in 2017 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO),
2017, pp. 160–170.

[31] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,
J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek,
D. Wessel, and K. Yelick, “A view of the parallel computing landscape,”
Commun. ACM, vol. 52, no. 10, p. 56–67, oct 2009. [Online]. Available:
https://doi.org/10.1145/1562764.1562783

[32] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo
et al., “The tao of parallelism in algorithms,” in Proceedings of the
32nd ACM SIGPLAN conference on Programming language design and
implementation, 2011, pp. 12–25.

[33] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent threads
style gpu programming for gpgpu workloads,” in 2012 Innovative
Parallel Computing (InPar), 2012, pp. 1–14.

[34] G. T. Leavens, “The java modeling language (jml),” URL
http://sourceforge. net/apps/wordpress/fixedptc, 2007.

[35] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe,
“The tensor algebra compiler,” Proc. ACM Program. Lang., vol. 1,
no. OOPSLA, Oct. 2017. [Online]. Available: https://doi.org/10.1145/
3133901

[36] “Threadsanitizer,” https://github.com/google/sanitizers, accessed: 2021-
6-28.

[37] “Archer,” https://github.com/PRUNERS/archer, accessed: 2021-6-26.
[38] “Memcheck tool,” https://docs.nvidia.com/cuda/cuda-memcheck/index.

html/memcheck-tool, accessed: 2021-6-28.
[39] “Racecheck tool,” https://docs.nvidia.com/cuda/cuda-memcheck/index.

html/racecheck-tool, accessed: 2021-6-28.
[40] “Initcheck tool,” https://docs.nvidia.com/cuda/cuda-memcheck/index.

html/initcheck-tool, accessed: 2021-6-28.
[41] “Cuda-synccheck,” https://docs.nvidia.com/cuda/cuda-memcheck/index.

html/synccheck-tool, accessed: 2021-6-28.
[42] S. F. Siegel, M. Zheng, Z. Luo, T. K. Zirkel, A. V. Marianiello, J. G.

Edenhofner, M. B. Dwyer, and M. S. Rogers, “Civl: the concurrency
intermediate verification language,” in SC ’15: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2015, pp. 1–12.

[43] “Cuda-memcheck,” https://docs.nvidia.com/cuda/cuda-memcheck/index.
html, accessed: 2021-6-28.

